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Abstract

An agent selectively samples attributes of a complex project so as to influence the decision

of a principal. The players disagree about the weighting, or relevance, of attributes. The corre-

lation across attributes is modeled through a Gaussian process, the covariance function of which

captures pairwise attribute similarity. The key tradeoff in sampling is between the alignment of

the players’ posterior values for the project and the variability of the principal’s decision. Un-

der a natural property of the attribute correlation—the nearest-attribute property (NAP)—each

optimal attribute is relevant for some player and at most two optimal attributes are relevant for

only one player. We derive comparative statics in the strength of attribute correlation and ex-

amine the robustness of our findings to violations of NAP for a tractable class of distance-based

covariances. The findings carry testable implications for attribute-based product evaluation and

strategic selection of pilot sites.

Keywords: attribute covariance, Gaussian sample paths, nearest-attribute property, strategic

sampling, powered-exponential covariances

JEL Classification: D83, D81, D72, D04

1 Introduction

Important decisions rely on selective exploration of multiple criteria or attributes: from buyers

appraising complex products for purchase to employers assessing the diverse skills of potential em-

ployees, policymakers evaluating the heterogeneous spatial impact of large-scale social programs, and

firms learning the demand across different consumer segments. Understanding the nature of such

selective exploration—which attributes are optimally explored and why—has been of long-standing

interest in economics (Huber and McCann (1982), Keeney and Raiffa (1976), Lancaster (1966)).
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Two features common to these examples but largely overlooked by the literature on attribute learn-

ing complicate such understanding. First, in many settings of interest attributes are correlated.

Evaluation relies on complex inferences from explored attributes to those left unexplored. Second,

agency conflict often undermines attribute exploration; the party selecting which attributes to learn

might weight attributes quite differently from the one making the multi-attribute decision.

This paper models the strategic interaction between a principal and an agent who jointly evaluate

an uncertain project consisting of a multitude of correlated attributes. The players share the same

understanding of how any two attributes of the project are correlated but disagree on the relevance

of attributes. They also have separate authorities in evaluation: the agent decides which attributes

to sample publicly, whereas the principal decides on the project based on the observed sample. We

study how properties of the attribute correlation shape strategic sampling.

Such a sampling problem arises, for instance, when a consumer learns his willingness to pay

for a multi-attribute product. Ample evidence from marketing suggests that consumers use their

beliefs about how the product attributes covary together to draw inferences from attributes that

are observed to those that remain unobserved (Walters and Hershfield (2020), Mason and Bequette

(1998)). For certain packaged food products, for instance, consumers might be able to observe only

the attributes that a health authority requires to be displayed in the nutrition label. How should

such a health authority design the content of nutrition labels if concerned that consumers tend to

underweight certain attributes, such as health considerations, in favor of other attributes, such as

taste? In another context, a policymaker might seek to assess the overall impact of a social program

rolled out across several sites from pilot studies run at select sites. The local impact at a given site

corresponds to an attribute, and such impact is naturally correlated across sites because of geographic

proximity or other shared characteristics. However, pilot studies are often decided upon and run by

independent agencies with their own weighting of the importance of different sites. Are the pilot

sites among those that the policymaker cares most about?1

This paper provides a novel and flexible framework for attribute sampling. The project under

evaluation is characterized by a mass of attributesA, of which the agent can sample up to k attributes.

Attribute realizations follow an unknown mapping, randomly drawn from the space of the sample

paths of a general Gaussian process. The process is pinned down by two commonly known parameters:

(i) an attribute mean µ : A → R, which encodes the expected realizations of attributes, and (ii) a

pairwise covariance σ : A×A → R, which encodes the similarity between any two attributes. This

framework covers a vast array of attribute mappings and patterns of extrapolation from a sample of

attributes, as shown in Figure 1 for four different Gaussian processes. Each player’s value from the

project consists of a sum of weighted attribute realizations, where the weight captures the relevance

of that attribute for the player.2 Each player seeks to minimize the quadratic loss from the principal’s

1A growing literature starting with Allcott (2015) has pointed out the low external validity of pilot findings due to
strategic selection of pilot sites. See the discussion in section 5.4.

2Such linear aggregation of attributes is a special case of the utility specification in Lancaster (1966) and Keeney
and Raiffa (1976) and it is standard in many applications of the multi-attribute framework, e.g., Spiegler (2016)
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(a) Brownian: σ(a, a′) = min(a, a′) (b) Ornstein-Uhlenbeck: σ(a, a′) = e−20|a−a′|

(c) Squared-exponential: σ(a, a′) = e−400(a−a′)2 (d) Polynomial: σ(a, a′) = (1 + aa′)10

Figure 1: The attribute mapping is in grey and the extrapolated mapping in red. For all plots, A = [0, 1] and the
attribute mean µ(·) is zero. The dots denote the realizations of the sample a = {0.2, 0.4, 0.6, 0.8}.

prediction of the value of the project.

The contribution of the analysis is threefold. First, we provide a general characterization of the

optimal sample for any attribute covariance and any disagreement about attribute weights. In the

single-player benchmark—i.e., in the absence of disagreement—the value of a sample is summarized

by the posterior variance that it induces on the player’s estimate of the value of the project. This

sufficient statistic encodes the tradeoff between the redundancy within the sample and the sample’s

generalizability to out-of-sample attributes: the single-player sample consists of attributes that are

weakly correlated with each other while strongly correlated with out-of-sample attributes. In contrast,

in the presence of disagreement, the agent’s payoff from a sample is summarized by two statistics: (i)

the covariance that the sample induces between the principal’s decision and the agent’s value, and

(ii) the posterior variance for the principal. These statistics capture the key tradeoff in sampling:

the agent prefers the sample to be more informative for the principal only insofar as it contributes

to greater alignment between the players. Theorem 2 unpacks this tradeoff in terms of the inferences

that players draw about individual attributes in the sample.

To study the precise composition of the optimal sample of attributes, we identify a natural

property of the attribute covariance—the nearest-attribute property (hereafter, NAP)—that renders

this characterization particularly tractable. This property, which is the second key contribution

on boundedly rational consumers, Srinivasan and Shocker (1973) on product evaluation, Nevo (2001) on product
differentiation etc.
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of the analysis, implies local extrapolation across the attribute space: the players’ inference about

an out-of-sample attribute is informed only by the neighboring attributes in the sample. In other

words, under NAP, the observed attributes segment the project into ex post independent clusters of

unobserved attributes, thus rendering the project modular ex post.

We first address whether the optimal sample includes irrelevant attributes, i.e., attributes the

realizations of which do not enter directly the value of the project for either player. Intuitively,

irrelevant attributes are valuable to sample: for example, in the single-player benchmark they might

be informative about many relevant attributes, or in the strategic setting they might be a natural

compromise whenever the relevant attributes of the two players are far apart. However, we find

that if the attribute covariance satisfies NAP, each attribute in the optimal sample is necessarily

relevant for at least one of the players. In the single-player benchmark, irrelevant attributes are too

low-powered to be informative about multiple ex post independent clusters of relevant attributes at

the same time. In the presence of disagreement, moreover, local extrapolation limits both the extent

to which irrelevant attributes are taken into account in the principal’s decision and the extent to

which they contribute to better alignment between players. Second, among attributes relevant for

some player, sampling of idiosyncratic attributes (i.e., attributes that are relevant for only one of the

players) is minimal: the optimal sample includes at most two idiosyncratic attributes. Moreover, we

show that the agent optimally either (i) selects a small sample of at most three attributes, at most

one of which is common (i.e., equally relevant for both players) and the rest are idiosyncratic, or (ii)

exhausts the available sampling capacity, in which case more than half of the optimal sample consists

of common attributes.

Our third contribution is to use a parametric class of distance-based attribute covariances—the

powered-exponential covariances—in order to investigate both how the optimal sample varies with

the strength of attribute correlation and the extent to which the aforementioned results are robust

to violations of NAP. For any attribute covariance within this class, correlation across attributes

weakens exponentially with distance.3 Whenever NAP is satisfied within this class, the single-player

sample expands with stronger attribute correlation in order to offset the increased redundancy within

the sample; the optimal attributes in the left half of the attribute space move closer to the leftmost

relevant attribute and those in the right half move closer to the rightmost relevant attribute. This

continues to be the case qualitatively also in the strategic setting if the mass of common attributes is

sufficiently large. By contrast, if the common attributes are few, stronger attribute correlation makes

the agent increasingly more concerned about the sample being too informative for the principal, which

strengthens incentives to sample closer to the agent’s idiosyncratic attributes. Furthermore, this class

of covariance allows us to examine how violations of NAP might make it optimal to sample irrelevant

attributes. Through a stylized example with only two relevant attributes, we show that sampling

of irrelevant attributes is optimal precisely for those powered-exponential covariances for which the

3As section 2.3 makes clear, the Ornstein-Uhlenbeck process (Figure 1b) and the squared-exponential process
(Figure 1c) both have powered-exponential covariances. However, only the covariance of the first satisfies NAP.
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two attributes covary negatively conditional on any irrelevant attribute. This is the case in both the

single-player setting and the strategic setting.

It is worth highlighting two further technical contributions. First, our approach generalizes the

Brownian motion approach in the experimentation and search literature (Callander (2011), Jovanovic

and Rob (1990)). The Brownian covariance satisfies NAP, therefore the tools that we develop to

analyze NAP covariances are transportable to problems beyond attribute sampling. A thorough

discussion of related work is postponed until section 5.3. Second, our characterization clarifies a key

difference between learning through correlated attributes and learning through correlated signals.4

Attributes are at the same time constituent components of the value of the project and feasible

signals about that value. Remark 1 fleshes out what this dual role of attributes implies for the

optimal sample and the value of sampling. The framework also has empirical implications for the

consumer research literature on evaluation of multi-attribute products, further discussed in section

5.1.

Section 2 sets up the model, establishes preliminary results on extrapolation, and introduces

NAP and the class of powered-exponential covariances. Sections 3.1 and 4.1 provide a general char-

acterization of optimal sampling in the single-player benchmark and in the principal-agent game,

respectively. Sections 3.2 and 4.2 illustrate the characterization for the class of powered-exponential

covariances. Section 5 discusses implications and extensions of our framework.5

2 Framework

2.1 Model

Players. A principal (P , she) and an agent (A, he) jointly evaluate a multi-attribute project

of unknown quality. The players have separate authorities: the agent chooses which attributes to

sample, whereas the principal makes a decision regarding the project based on the observed attributes.

The players differ in their respective weighting of attributes, which gives rise to agency conflict.

Attributes. The project is characterized by a compact attribute space A = [α, ᾱ] ⊂ R. The

realization of attribute a ∈ A is denoted by f(a) ∈ R. Attribute realizations follow an unknown

mapping f : A → R, drawn from the space of sample paths of a Gaussian process with prior mean

function µ : A → R and symmetric positive semi-definite covariance function σ : A×A → R.6 Per

4The existing literature has taken these to be equivalent problems. E.g., Klabjan, Olszewski and Wolinsky (2014)
state that “The xi’s can be viewed as realizations of signals about the value of the object, rather than as actual
attributes.”

5Appendix A provides auxiliary results supporting section 2.1. Appendix B collects proofs of results in sections
2.2, 2.3, 3.1, and 4.1. Appendices C and D collect proofs and auxiliary results for sections 3.2 and 4.2 respectively.
Appendix E supports the discussion in section 5.

6Given a probability space (Ω,F ,P), a stochastic process f := {f(a, ω)}a∈A,ω∈Ω with index set A is a Gaussian
process if and only if (f(a1), . . . , f(an)) are jointly Gaussian for any a1, . . . , an ∈ A and n ≥ 1. See Appendix A and
Rasmussen and Williams (2006) for a technical introduction to Gaussian processes.
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standard notation, the distribution over possible attribute mappings is

f ∼ GP (µ, σ) . (1)

Parameters (µ, σ) are commonly known and they pin down the distribution of f . The prior mean

µ(a) := E[f(a)] specifies the expected realization of attribute a ∈ A, whereas σ(a, a′) specifies the

covariance between f(a) and f(a′) for any attribute pair a, a′ ∈ A. The covariance can be interpreted

as a similarity measure over attributes, as discussed in section 5.2. Figure 2a illustrates the attribute

mapping and the prior mean function for a familiar Gaussian process, namely the Brownian motion.

To impose regularity on the attribute structure, we require that attributes that are close in

the attribute space have comparable realizations in the attribute mapping. An implication of this

requirement is that µ and σ are both continuous.7 That is, the realizations of any two attributes

arbitrarily close in A are almost equal in expectation and almost perfectly correlated.

Assumption 1 (Sample-path continuity). Almost surely any realization of f is continuous.

Sampling. Because f is a sample path of a Gausian process, the realizations of any sample of k

attributes a = {a1, . . . , ak} are jointly Gaussian, that is

f(a) :=


f(a1)

...

f(ak)

 ∼ N




µ(a1)

...

µ(ak)


︸ ︷︷ ︸

:=µ(a)

,


σ(a1, a1) . . . σ(a1, ak)

...
. . .

...

σ(ak, a1) . . . σ(ak, ak)


︸ ︷︷ ︸

:=Σ(a)


.

Let |a| denote the number of distinct attributes in a and let a ∈ a be one such attribute. The sample

mean and the sample covariance matrix are denoted by µ(a) and Σ(a) respectively.

The agent samples attributes subject to a sampling capacity k ∈ N: the cost of drawing n

attributes is zero if n ≤ k and +∞ otherwise.8 Upon sampling, the pair (a, f(a)) is observed

publicly and players are symmetrically informed throughout the game. Without loss we restrict

attention to non-redundant samples, i.e., samples of attributes the realizations of which are linearly

independent. That is, the set of feasible samples consists of

Ak :=
⋃
n⩽k

{{a1, . . . , an} ⊂ A : Σ ({a1, . . . , an}) is non-singular} . (2)

Decision and payoffs. Player i’s value for the project is a weighted sum of attribute realizations

vi =

∫
A
f(a)ωi(a) da, (3)

where ωi is player i’s attribute weight function, assumed to be bounded and continuous almost

everywhere, and hence integrable. An attribute is relevant for player i if ωi(a) ̸= 0 and it is irrelevant

7Appendix A provides sufficient conditions on (µ, σ) to guarantee sample-path continuity (Proposition 13) and
establishes that sample-path continuity implies continuity of µ and σ (Proposition 14).

8Due to the Gaussian distribution of attribute realizations and quadratic loss payoffs (as introduced next), simul-
taneous and sequential sampling are equivalent here.
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otherwise. Correspondingly, the set of relevant attributes supp(ωi) := {a ∈ A : ωi(a) ̸= 0} is compact

for each player.9 We let ai and āi denote, respectively, the leftmost and the rightmost relevant

attributes for player i. Of particular interest to our analysis is the case in which the set of relevant

attributes is an interval; that is, ωi(a) ̸= 0 if and only if a ∈ [ai, āi] ⊂ A. A relevant attribute a is

said to be desirable (or undesirable) for player i if ωi(a) > 0 (or ωi(a) < 0).

(a) Attribute mapping f (grey) and prior mean
µ(a) = a/2 (red).

(b) The player’s value vi (yellow) and prior
value νi0 (red) for ωi(a) = 1 for all a ∈ A.

Figure 2: The Brownian motion with drift 1/2 and σ(a, a′) = min(a, a′) for all a, a′ ∈ A = [0, 1].

The pair of attribute weight functions (ωA, ωP ) is commonly known. Lemma 3 (in Appendix A)

establishes that (i) the attribute weights and the attribute covariance can be normalized without loss

so that the variance of each attribute is either zero or one (a normalization that we adopt hereafter),

and (ii) in the single-player benchmark it is without loss for all attributes to be desirable and the

sum of attribute weights to equal to one. Due to Assumption 1, the value vi and its distribution are

well-defined. The ex ante distribution of the value for player i ∈ {A,P} is

vi ∼ N


∫
A
µ(a)ωi(a) da︸ ︷︷ ︸

:=νi
0

,

∫
A

∫
A
σ(a, a′)ωi(a)ωi(a

′) dada′

 . (4)

Let νi0 = E[vi] denote i’s prior (expected) value of the project. Graphically, in Figure 2b this prior

value corresponds to the area under the linear prior mean µ. Similarly, let νi(a, f(a)) = E [vi | a, f(a)]
be the posterior (expected) value of the project for player i given the sample (a, f(a)). For brevity

of notation, we denote it as νi(a).

The principal takes a decision d ∈ R based on his posterior value. For a given attribute mapping

f with corresponding value vi, the ex post payoff of player i takes the quadratic loss form:

ui(d, vi) = −(d− vi)
2. (5)

That is, each player prefers that the decision matches his value from the project. In the absence of

any sampling, therefore, the principal takes the status quo decision equal to νP0 .

9If the set of relevant attributes is finite, the integral (3) becomes a weighted sum.
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2.2 Extrapolation and inference

Player i’s inferential problem proceeds in two steps, as described in Lemma 1. He first extrapolates

from the realizations of the sample to the rest of the attribute space, which results in the extrapolated

attribute mapping as depicted in Figure 1. This is the best estimate that the player has for out-of-

sample attributes. He then infers the posterior value of the project from the extrapolated mapping.

Lemma 1. Fix sample a = {a1, . . . , an} ∈ Ak with n ≤ k and realizations f(a) ∈ Rn.

(i) For any attribute â ∈ A, its expected realization is given by

E[f(â) | a, f(a)] = µ(â) +

n∑
j=1

τj(â;a) (f(aj)− µ(aj)) , (6)

where τj(â;a) is the (1, j)th entry of the vector
(
σ(a1, â) . . . σ(an, â)

)
[Σ(a)]

−1
. For any

j = 1, . . . , n and m ̸= j, τj(aj ;a) = 1 and τm(aj ;a) = 0.

(ii) Player i’s posterior value is a linear combination of the sample realizations

νi(a) = νi0 +

n∑
j=1

τ ij(a) (f(aj)− µ(aj)) (7)

where realization f(aj) is weighted by the sample weight

τ ij(a) :=

∫
A
τj(â;a)ωi(â) dâ. (8)

When extrapolating to an out-of-sample attribute â /∈ a, the player considers how similar that

attribute is to each sample attribute, as well as how strongly sample attributes covary with each

other. A player’s best estimate for f(â) is a linear combination of the sample realizations, where

the jth attribute in the sample is weighted by τj(â;a).
10 For instance, if the attribute mapping

is a Brownian sample path, equation (6) simplifies to the familiar Brownian-bridge extrapolation

in Callander (2011). More generally, the shape of the extrapolated mapping is dictated by the

parametric form of the attribute covariance function.

The posterior value of the project is also a linear combination of the sample realizations. The

sample weight τ ij(a) corresponds to the marginal change in player i’s posterior value as a result of a

marginal change in the realization f(aj) for aj ∈ a. Since the players share the same understanding

of the attribute covariance but assign different attribute weights, they extrapolate in the same way

to out-of-sample attributes but hold generically different posterior values. Whenever appropriate, we

simplify notation by writing the sample weight of a singleton sample as τ i(a1) := τ i1 ({a1}).
10Because sample realizations are observed without noise, the extrapolated mapping traverses the realizations. Our

focus is on which attributes are sampled from a large attribute space rather than how precisely each is sampled.
Appendix E.3 discusses an extension to noisy observations of attribute realizations.
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2.3 Nearest-attribute property

Of particular interest to our analysis is a class of highly tractable attribute covariances for which

extrapolation to out-of-sample attributes is local, in the sense that it takes into account only the

realizations of those sample attributes in the immediate vicinity of the out-of-sample attribute. Given

a sample a ∈ Ak and an attribute a ∈ A, let n(a;a) ⊂ a be the subset of the nearest sample attributes

max
a

{aj : aj < a} and min
a

{aj : aj > a}. Any out-of-sample attribute has at most two such neighbors.

Definition 1. The covariance σ satisfies the nearest-attribute property (NAP) if E [f(a) | a, f(a)] =
E [f(a) | n(a;a), f(n(a;a))] for any a ∈ A,a ∈ Ak, and f(a) ∈ R|a|.

Lemma 2 identifies necessary and sufficient conditions on the process and on the attribute co-

variance that guarantee NAP. This property goes hand in hand with the process from which the

attribute mapping is drawn being Markov: for any a < a′ < a′′, observing f(a′) renders f(a) and

f(a′′) conditionally independent. Any sample of k attributes segments the attribute space into (k+1)

conditionally independent clusters of attributes. That is, upon sampling, the project looks ex post

modular. In turn, this is equivalent to the correlation between any two arbitrary attributes a and a′′

being equal to the product of the correlation between a and a′ and that between a′ and a′′ for any

a′ ∈ (a, a′′). That is, how similar attribute a′ ∈ (a, a′′) is to a and to a′′ respectively exactly pins

down how similar a and a′′ are to each other.11

Lemma 2. The following statements are equivalent:12

(i) the attribute covariance σ satisfies NAP;

(ii) for any a, a′, a′′ ∈ A such that a < a′ < a′′, σ(a, a′′) = σ(a, a′)σ(a′, a′′);

(iii) the attribute mapping f follows a Markov process.

Moreover, we can obtain explicit expressions for the sample weights that arise from NAP co-

variances. Because extrapolation is local, the sample weight aggregates the covariance of the sample

attribute with any out-of-sample attributes in its immediate vicinity. The tractability of these sample

weights allows us to derive general properties of optimal sampling for NAP covariances.13

Corollary 1. Suppose σ satisfies NAP. Then, σ(a, a′) ⩾ 0 for any a, a′ ∈ A. Moreover, for any

a = {a1, . . . , an} ∈ Ak and each player i, the sample weights are given by

τ i1(a) =

∫ a1

a

σ(a, a1)ωi(a) da+

∫ a2

a1

σ(a, a1)
1− σ2(a, a2)

1− σ2(a1, a2)
ωi(a) da,

τ ij(a) =

∫ aj

aj−1

σ(a, aj)
1− σ2(a, aj−1)

1− σ2(aj−1, aj)
ωi(a) da+

∫ aj+1

aj

σ(a, aj)
1− σ2(a, aj+1)

1− σ2(aj , aj+1)
ωi(a) da,

11This property is reminiscent of the notion of segmental additivity in spatial models of perceptual similarity in
cognitive psychology (Beals, Krantz and Tversky, 1968).

12Per Lemma 3 in Appendix A, the statement of part (ii) takes it as given that all attributes have unit variance.
However, the proof allows for flexible attribute variance and does not rely on Lemma 3.

13Sample weights are also arguably easier to elicit from observational data than the entire attribute covariance
function. Hence, NAP can be tested indirectly using Corollary 1.
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τ in(a) =

∫ ā

an

σ(a, an)ωi(a) da+

∫ an

an−1

σ(a, an)
1− σ2(a, an−1)

1− σ2(an−1, an)
ωi(a) da.

If all attributes are desirable (undesirable) for player i, then τ ij(a) ⩾ (⩽)0 for any j ⩽ n.

Powered-exponential covariances. To illustrate the importance of NAP for sampling, we in-

voke a parametric class of covariances known as powered-exponential covariances. They take the

distance-based form σp(a, a
′) = e−(|a−a′|/ℓ)

p

for ℓ > 0 and p ∈ (0, 2]. Such covariances share key

common features: all attributes are equally uncertain ex ante, the correlation between any two at-

tributes decays exponentially with their distance in the attribute space, and the strength of attribute

correlation is parametrized by ℓ > 0.14 However, such commonalities belie fundamentally different

attribute mappings for different values of p. For instance, Figures 1b and 1c show that the sample

paths corresponding to p = 1 are nowhere differentiable, whereas those corresponding to p = 2 are

smooth.

Importantly, the only covariance that satisfies NAP within this class is that corresponding to

p = 1. This is the covariance of the well-known Ornstein-Uhlenbeck (OU) process. We invoke the

OU covariance throughout to sharpen the characterization of optimal sampling under NAP. The

equality of Lemma 2.2(ii), which certainly holds for p = 1, becomes a strict inequality whenever

NAP is violated: for any a < a′ < a′′, σp(a, a
′′) ≷ σp(a, a

′)σp(a
′, a′′) for p ≶ 1. This inequality has

a natural interpretation. The ex ante covariance between attributes a and a′′ is σp(a, a
′′), but the

covariance after f(a′) is observed decreases to σp(a, a
′′)−σp(a, a′)σp(a′, a′′). That is, after the sample

is observed, the attribute realizations f(a) and f(a′′) covary positively for p < 1, are independent

for p = 1, and covary negatively for p > 1.

3 Benchmark: Single-player sampling

This section establishes a benchmark for optimal sampling in the absence of conflict, i.e., when

ωA = ωP = ω. We refer to this benchmark as single-player sampling. Section 3.1 first provides

a general characterization of single-player sampling for any attribute covariance, and then employs

this characterization to understand the importance of NAP for whether irrelevant attributes are

optimally sampled. Section 3.2 illustrates this characterization for the class of powered-exponential

covariances.

3.1 General characterization

Any sample of attributes induces a Gaussian distribution over the player’s posterior value for the

project. That is, ν(a) ∼ N
(
ν0, ψ

2(a)
)
for any a ∈ Ak, where ψ

2(a) := var [E[v | a, f(a)]] is the poste-
14The exponential decay as a way of capturing similarity between two uncertain primitives in a spatial model is not

without precedent. Shepard (1987) first postulated it as a natural model of generalizations across similar stimuli in a
psychological space. More recently, Billot, Gilboa and Schmeidler (2008) offers an axiomatization of such a similarity
function in the context of extrapolation from historical data.
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rior variance induced by sample a. The posterior variance corresponds to the amount of uncertainty

resolved by the sample. Upon observing the sample realizations, the player takes the decision that

minimizes his expected quadratic loss. Such optimal decision equals the posterior value ν(a). The

expected loss from sample a corresponds to the residual uncertainty about the project, since

V s(a) = E
[
− (ν(a)− v)

2
]
= −

(
var[v]− ψ2(a)

)
. (9)

Therefore, the posterior variance provides a sufficient statistic based on which the player ranks feasible

samples. Samples with higher posterior variance lead to a lower expected loss. A distinctive feature

of the attribute problem is that both var[v] and ψ2(a)—that is, both the amount of uncertainty that

there is ex ante about the value of the project and that which is resolved by any feasible sample—

are determined by the attribute covariance function. We revisit how the expected loss from the

single-player sample varies with the degree of the attribute correlation in section 3.2. Theorem 1

characterizes single-player sampling for any general attribute covariance.

Theorem 1. Any single-player sample as ∈ Ak maximizes the posterior variance ψ2 over the set of

feasible samples Ak, where ψ
2 is given by

ψ2(a) =

|a|∑
j=1

τj(a)τ(aj) (10)

for any a ∈ Ak. The set of single-player sample does not depend on µ or ν0.

The player optimally identifies attributes that, when considered in the context of the entire

sample, are most useful in predicting the value of the project. If considered in isolation from the rest

of the sample, each sample attribute aj ∈ a carries informativeness τ2(aj). So if the player were to

ignore correlation within the sample, the posterior variance would be
∑|a|

j=1 τ
2(aj). When correlation

is taken into account, however, τ(aj) is scaled by its actual sample weight τj(a) rather than τ(aj) in

the jth term of this summation. Attribute aj contributes to posterior variance directly through the

term τj(a)τ(aj) and indirectly through its impact on the rest of the sample weights τ−j(a).
15

Two immediate implications are worth noting. First, a project is evaluated based on the same

optimal sample of attributes regardless of its prior value. Hence, if the player were to sample at-

tributes sequentially, the optimal attribute to be sampled next would not depend on the past history

of sample realizations. Whether the player samples attributes simultaneously or sequentially is im-

material. Second, any single-player sample uses the entire capacity k, unless the uncertainty about

the project can be fully resolved with fewer than k attributes. The latter would be the case if the

attribute weight function ω is such that there are fewer than k relevant attributes, or if the attribute

covariance σ is such that there are no non-redundant samples of exactly k attributes, i.e., Ak = Ak−1.

15An observer need not know the true σ in order to derive the value of a sample V s: it suffices to elicit the player’s
sample weights τ(aj) and τj(a). In turn, the observer can solve for the pairwise covariances σ(ai, aj) for each ai, aj ∈ a

by solving the system of |a| linear equations of the form
∑|a|

i=1 τi(a)σ(ai, aj) = τ(aj) (see proof of Theorem 1).
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Marginal value of a sample attribute. In the presence of NAP, the posterior variance (10)

can be simplified further because each sample weight depends on at most three adjacent sample

attributes. Proposition 1 derives the marginal value of each sample attribute, which depends only

on the attribute itself and its neighboring sample attributes. Intuitively, the marginal value is higher

the more similar the sample attribute is to out-of-sample attributes in its immediate vicinity and

the more dissimilar it is to the neighboring sample attributes. NAP reduces the player’s sampling

problem to a set of local optimization problems.

Proposition 1. Let σ satisfy NAP. In any single-player sample as = {as1, . . . , asn} ∈ Ak, where

n ⩽ k and asj < asj+1 for j = 1, . . . , n− 1, the attributes as1 and asn solve, respectively,

max
a1⩽as

2

(
1− σ2(a1, a

s
2)
)
τ21 ({a1, as2}) , max

an⩾as
n−1

(
1− σ2(asn−1, an)

)
τ2n
(
{asn−1, an}

)
,

whereas any attribute asj ∈ {as2, . . . , asn−1} solves

max
as
j−1⩽aj⩽as

j+1

τ2j ({asj−1, aj , a
s
j+1})

(1− σ2(asj−1, aj))(1− σ2(aj , a
s
j+1))

1− σ2(asj−1, a
s
j+1)

.

No sampling of irrelevant attributes. Does a single-player sample ever include irrelevant at-

tributes? Even though irrelevant attributes do not enter directly the value of the project, their

marginal value need not be zero a priori because they might be strongly correlated with relevant at-

tributes. Nonetheless, Proposition 2 establishes that if extrapolation is local, the player only samples

among the relevant attributes.

Proposition 2. If σ satisfies NAP, any single-player sample consists of relevant attributes only.

To see the intuition for the suboptimality of irrelevant attributes, suppose there are only two

relevant attributes a < ā, the value of the project is v = f(a) + f(ā), and the player can sample at

most one attribute. If attribute a ∈ A is sampled, the sample weight is τ(a) = σ(a, a) + σ(a, ā) and

the corresponding posterior variance is ψ2(a) = (σ(a, a) + σ(a, ā))
2
. When unpacked, the posterior

variance consists of a sum of (i) the informativeness of the sample attribute about a, which is σ2(a, a),

(ii) its informativeness about ā, which is σ2(a, ā), and (iii) the covariance of the estimates that the

player forms about each relevant attribute, given by σ(a, a)σ(a, ā).16 Such covariance is higher the

more informative the sample attribute is about the overlap of the two relevant attributes. Thus,

single-player sampling balances informativeness about each relevant attribute with informativeness

about the overlap. This is the case for any general attribute covariance.

Now suppose σ satisfies NAP. Sampling an irrelevant attribute in (a, ā) renders the realizations

of the two relevant attributes independent. The covariance between the estimates equals σ(a, ā)

regardless of which attribute is sampled. So attributes in (a, ā) differ only with respect to how

informative they are about a and ā. Moreover, letting x ∈ (σ2(a, ā), 1) denote the informativeness

16Formally, E [f(a) | f(a)] = µ(a)+σ(a, a)(f(a)−µ(a)) and E [f(ā) | f(a)] = µ(ā)+σ(a, ā)(f(a)−µ(a)). Therefore,
the covariance of these two estimates is σ(a, a)σ(a, ā).
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about one relevant attribute, the informativeness about the other is σ2(a, ā)/x. The key observation

is that the sum x+σ2(a, ā)/x is strictly convex in x: there is a first-order loss in the informativeness

about one relevant attribute while only a second-order gain in the informativeness about the other.

Hence, the player prefers sampling one of the relevant attributes to any irrelevant attributes in

between. Reasoning in a similar way, it is also suboptimal to sample attributes to the left of a or to

the right of ā. The closer any such attribute is to both relevant attributes, the more informative it

is about each of them as well as their overlap. The proof of Proposition 2 generalizes this argument

to any sampling capacity and any attribute weights.

3.2 Single-player sampling for powered-exponential covariances

We now turn to whether sampling irrelevant attributes is desirable for the class of powered-exponential

covariances. Continuing with the stylized example, let the relevant attributes be a and ā, weighted

equally, and the sampling capacity be one. Because attribute covariance weakens with distance, it is

immediate that it is suboptimal to sample irrelevant attributes to the left of a or to the right of ā:

the closer a is to both relevant attributes, the stronger is its correlation to each of them, hence the

greater is the corresponding posterior variance (σp(a, a) + σp(a, ā))
2
.

It is less trivial whether the player might prefer to sample in the interval (a, ā). Figure 3 plots the

posterior variance induced from sampling an attribute for different values of p. As to be expected from

Proposition 2, sampling either a or ā is optimal in the case of the OU covariance, which satisfies NAP.

However, plot (a) suggests that, though sufficient, NAP is not necessary: in this stylized example,

sampling an irrelevant attribute is in fact suboptimal for any p ⩽ 1. The covariance of the estimates

that the player holds for the relevant attributes σp(a, a)σp(a, ā) is strictly below σp(a, ā), so it is

maximized at either a = a or a = ā. Moreover, the sum of the informativenesses σ2
p(a, a) + σ2

p(a, ā)

continues to be strictly convex in a, since the covariance σp is strictly convex in distance for p ⩽

1. Sampling close to a relevant attribute incurs a first-order loss in informativeness about that

attribute but only a second-order gain in informativeness about the other relevant attribute. Hence,

an irrelevant attribute contributes neither to higher informativeness about each relevant attribute

nor to stronger covariance between their estimates.

a ā

ψ2

a

(a) p = 1/2

a ā

ψ2

a

(b) p = 1 (NAP)

a ā

ψ2

a

(c) p = 3/2

a ā

ψ2

a

(d) p = 2

Figure 3: Posterior variance of singleton sample {a} given A = [0, 1], a = 1/10, ā = 9/10, ℓ = 3/5.

In contrast, plots (c) and (d) show that sampling an irrelevant attribute between a and ā can

be optimal for p > 1. On the one hand, σp(a, a)σp(a, ā) is strictly above σp(a, ā) for such attribute

covariances. This means that the realizations of the relevant attributes are negatively correlated ex
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post, which reduces the residual uncertainty about the project. On the other hand, the sum of the

informativeness for each relevant attribute is not necessarily convex. Since the attribute covariance

σp for p > 1 is concave for small distances and convex for large ones, sampling in a neighborhood of

a relevant attribute induces a first-order gain in the informativeness about the more distant relevant

attribute while only a second-order loss in the informativeness about the closer one. These two forces

in tandem make it desirable to sample irrelevant attributes in (a, ā). Proposition 3 formalizes these

observations.

Proposition 3. Fix k = 1. Let the attribute covariance be a powered-exponential covariance. Let

ω(a) = 1 if a ∈ {a, ā}, where a < ā, and ω(a) = 0 otherwise.

(i) For any p ∈ (0, 1], the single-player sample consists of a relevant attribute, i.e., as ∈ {a, ā}.

(ii) For any p ∈ (1, 2], the single-player sample consists of an irrelevant attribute as ∈ (a, ā). For

any fixed p ∈ (1, 2], as converges to either relevant attribute as ℓ → 0; as = (a + ā)/2 for ℓ

sufficiently large; and the distance of as from (a+ ā)/2 decreases in ℓ. For any fixed ℓ > 0, as

converges to either relevant attribute as p ↓ 1.

Sampling an irrelevant attribute not only might be desirable, but it is in fact generically so for

any p > 1 and any degree of attribute correlation ℓ > 0. As the attribute correlation weakens, it

becomes more difficult to extrapolate from an irrelevant attribute to a relevant one. The overlap

between the relevant attributes shrinks, and so does the extent to which an irrelevant attribute can

be informative about this overlap. Irrelevant attributes that are far from either relevant attribute

lose their appeal. In response, the the player samples more closely to a relevant attribute.

Single-player sampling for the OU covariance. It is generally intractable to obtain closed-

form expressions for the posterior variance and the single-player sample for any powered-exponential

covariance. However, the case of p = 1 is fully tractable. In what follows, we characterize which

relevant attributes are sampled among an interval of equally weighted attributes.

Assumption 2. Let ω(a) = 1 if a ∈ [0, 1] and ω(a) = 0 otherwise.

Thanks to Corollary 1, the sample weights can be obtained in closed form. All sample weights

are positive: a higher realization for any sample attribute is good news for the project. Because

extrapolation is local, the closer a sample attribute is to neighboring sample attributes, the smaller

is the set of out-of-sample attributes about which it is informative, and hence the lower is its sample

weight. Extrapolation through the sample realizations is non-linear and convex towards the prior

mean µ, as illustrated in Figure 1b. This tendency towards the prior mean, which is due to the

mean-reverting property of the OU process, is stronger the less correlated the attributes are.

For k = 1, the player optimally samples as1 = 1/2. All attributes are equally uncertain, so the

most informative attribute is naturally the one that is on average closest to all other attributes.

Proposition 4 generalizes this intuition. The unique single-player sample has a simple structure for
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any sampling capacity: it is symmetric around a = 1/2, any two adjacent sample attributes are

equidistant, and all sample attributes are equally weighted in the posterior value.

Proposition 4. Let Assumption 2 hold. The single-player sample as = {as1, . . . , ask} is unique, and

it is:

(i) symmetric with respect to the median attribute, i.e., asj = 1− ask−j+1 for any j;

(ii) the unique solution to the system of equations

1− e−as
1/ℓ = tanh

(
1− 2as1
2ℓ(k − 1)

)
, asj = as1 + (j − 1)

1− 2as1
k − 1

; (11)

(iii) such that all sample realizations are equally weighted, i.e., τj(a
s) = τm(as) for j,m = 1, . . . , k.

Figure 4: The single-player sample for the OU covariance (p = 1), k ∈ {1, 2, 3, 4, 5} (from bottom to top), and
ℓ ∈ (0.02, 2) in increments of 0.01 (from blue to red).

This explicit characterization of the single-player sample affords an understanding of how the

sample varies with attribute correlation. As the attribute space becomes more correlated, it becomes

easier to extrapolate from a sample and the sample attributes become more redundant. To com-

pensate, the single-player sample expands to more peripheral attributes (see Figure 4). However, as

attributes approach perfect correlation (resp., independence), the limit single-player sample remains

bounded away from the most peripheral attributes a = 0 and a = 1 (resp., median attribute a = 1/2).

Proposition 5. For any j ∈ {1, . . . , k}, the single-player sample is such that the distance |asj − 1/2|
increases in ℓ and the sample converges to asj → j/(k + 1) as ℓ → 0 and to asj → (2j − 1)/(2k) as

ℓ→ +∞.

Finally, the value of sampling k attributes is single-peaked in the degree of attribute correlation.

The prior uncertainty about the value of the project, given by var[v] = 2ℓ
(
ℓ(1 + e−1/ℓ) + 1)

)
∈ (0, 1),

increases in such correlation.17 If attributes are either close to independent or close to perfectly

correlated, the player’s expected loss from a sample is small: in the former case, because the prior

uncertainty is negligible, whereas in the latter because one attribute is enough to learn the value

almost perfectly. The player is worst off when evaluating a project of moderately correlated attributes

(Figure 5a). Moreover, it is for moderately correlated attributes that the marginal value of an

additional unit of sampling capacity is highest (Figure 5b).

17It approaches zero as ℓ → 0 since the uncertainty about the sum of a unit mass of independent attributes is zero.
It approaches one as ℓ → +∞ since the uncertainty about the project collapses to uncertainty about a single attribute.
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(a) Expected loss from as for capacity k

`

marginal value

k = 1

k = 2
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(b) Marginal value of sampling from k to k+ 1

Figure 5: The dependence of the value of sampling on attribute correlation

Remark 1 (Attributes as signals). Attributes are not only constituent components of the value of

the project, but also the means through which the player learns about this value.18 Because of this,

the attribute covariance determines simultaneously both (i) how uncertain the value v is ex ante, and

(ii) how informative any sample of attributes is about v. If attributes were instead modeled as signals

that are informative about but do not enter directly the value of the project, the attribute covariance

would determine (ii) but not (i). This modeling choice—whether attributes enter the value directly

or not—matters for how the value of sampling varies with attribute correlation and for the form that

the single-player sample takes.

In contrast to the non-monotonicity in the value of sampling attributes, Clemen and Winkler

(1985) show that the value of sampling signals that do not enter directly the value of the project is

monotone in the correlation across signals. The stronger such correlation is, the more redundant the

signals are. Therefore, both the value of a sample of signals and the marginal value of an additional

signal decrease with correlation. Moreover, the player would optimally sample signals that are as

independent as possible from each other so as to minimize the redundancy in their informativeness

about v. For an example that stays close to our framework, suppose the value is distributed as

v ∼ N (ν0, 1) and the player has access to a unit mass of correlated signals a ∈ [0, 1] with realizations

f(a) = v + ξ(a), where the noise term ξ(a) follows a zero-mean OU process. The player would

optimally sample the least correlated signals: {0, 1} for k = 2, {0, 1/2, 1} for k = 3, {0, 1/3, 2/3, 1}
for k = 4 and so on. That is, the single-player sample not only looks quite different from the one

characterized in Proposition 4, but is also independent of ℓ, the strength of signal correlation.

4 Strategic attribute sampling

4.1 General characterization

Upon observing f(a), the principal takes the decision that minimizes her expected loss. As in the

single-player benchmark, this optimal decision corresponds to her posterior value d∗(f(a)) = νP (a).

18In this regard, our modeling of attributes is akin to how bidders’ signals are modeled in interdependent value
auctions. Klabjan, Olszewski and Wolinsky (2014) remark that attributes can be reinterpreted as signals or sources
of information, the distributions of which depend on the value; this is consistent with our Theorem 1.
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Knowing this, the agent seeks a sample of attributes for which the principal’s posterior value predicts

well his value vA. That is, he solves

max
a∈Ak

E
[
− (νP (a)− vA)

2
]
. (12)

The agent’s value vA and the principal’s decision νP (a) are jointly Gaussian. The sample choice de-

termines both the variance of νP (a), i.e., how informative the sample attributes are for the principal,

and the covariance between νP (a) and vA, i.e., how well the sample aligns the players’ interests. The

agent prefers the decision to be as close as possible to his value of the project.

The value of a sample, therefore, is determined by two considerations: how much uncertainty the

sample introduces in the principal’s decision and how strongly the sample correlates the principal’s

decision with the agent’s value. The agent’s expected payoff from a sample simplifies to

VA(a) = −
(
νP0 − νA0

)2 − var[vA − νP (a)] = VA(∅) + cov[vA, νP (a)]−
(
ψ2
P (a)− cov[vA, νP (a)]

)
,

where VA(∅) denotes the payoff from no sampling. The added value of the sample VA(a) − VA(∅)
reflects the agent’s two considerations. The term cov[vA, νP (a)] captures the alignment between the

players’ interests,19 whereas the term ψ2
P (a) − cov[vA, νP (a)] captures the part of the uncertainty

in the principal’s decision that is excessive. The agent prefers the sample to be more informative

for the principal only to the extent that its informativeness contributes to greater alignment. If the

players’ attribute weights coincide as in section 3, the term cov[vA, νP (a)] equals the players’ shared

posterior variance, whereas the second term ψ2
P (a)− cov[vA, νP (a)] vanishes.

Theorem 2 characterizes the agent’s optimal sampling problem. Due to quadratic loss, the trade-

off between the two relevant statistics cov[vA, νP (a)] and ψ2
P (a) is linear and independent of the

players’ prior values for the project. It is immediate that any non-empty optimal sample must

induce strictly positive covariance between the principal’s decision and the agent’s value, for otherwise

the agent would be better off forgoing sampling altogether. Theorem 2 rewrites the two sufficient

statistics in terms of the players’ sample weights, which reduces the agent’s optimization over the

space of all feasible samples of at most k attributes to optimization over a two-dimensional space of

feasible values for the pair of sufficient statistics.

Theorem 2. Any optimal sample solves

a∗ ∈ arg max
a∈Ak

2α2(a)− α1(a), (13)

where α1(a) := ψ2
P (a) is the posterior variance for the principal given by (10), whereas

α2(a) :=

n∑
j=1

τPj (a)τA(aj) (14)

is the covariance between the principal’s posterior value νP (a) and the agent’s value vA. The set of

optimal samples is independent of
(
νP0 , ν

A
0

)
.

19This also corresponds to the covariance in the players’ posterior values: cov[vA, νP (a)] = cov[νA(a), νP (a)].
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Feasible region of sufficient statistics. The underlying attribute covariance determines the set

of feasible pairs of (α1, α2) that are attainable by samples in Ak. This set is given by

Sk := {(α′
1, α

′
2) : ∃a ∈ Ak such that α1(a) = α′

1 and α2(a) = α′
2}.

By (13), for any fixed α1, the added value of the sample is increasing in α2. Hence, it is sufficient

for the agent to consider the subset S̄k =
{
(α1, ᾱ2) ∈ Sk : ᾱ2 = max(α1,α2)∈Sk

α2

}
. This simplifies

the sampling problem to that of maximizing 2α2 − α1 over pairs (α1, α2) ∈ S̄k. Figure 6a illustrates

Sk for the OU covariance. The optimal sample a∗ corresponds to the point at which the tangent

line of slope 1/2 touches S̄k. Figure 6b illustrates how Sk shifts upwards, in terms of both sufficient

statistics, as attribute correlation strengthens. It shrinks to a single pair as attributes approach

either independence or perfect correlation—at either extreme, all samples are equally valuable. It is

for intermediate degrees of attribute correlation that Sk appears to be largest.

α2

α1

a
∗

a
s
A

a
s
P

α1(a
∗)

α2(a
∗)

(a) The optimal sample a∗ (black) and the
single-player samples as

A,as
P (red).

α2

α1

greater `

α1(a)

(b) The set S2 as a function of ℓ ∈
{1/10, 1/5, 1/2, 1, 2, 3}.

Figure 6: Feasible set of (α1, α2) for the OU covariance, k = 2, A = [0, 1], ωA(a) = a, ωP (a) = 1.

Mild disagreement. Under mild disagreement—one in which the players agree about the relative

relevance of the attributes but not about the absolute relevance of the project—the optimal sample,

whenever non-empty, coincides with the single-player sample of both players. Because the relative

relevance ωi(a)/ωi(a
′) of any two attributes a and a′ is the same for both players, their single-player

samples coincide. So whenever sampling is optimal, a single-player sample is drawn. The only

departure from the single-player benchmark is that the agent might refrain entirely from sampling.

If the project is sufficiently less important to the agent than to the principal, i.e., if |ωA| is smaller

than |ωP |, the agent forgoes all sampling because the principal’s decision is too unpredictable from

the agent’s perspective.

Proposition 6. Suppose the players agree on the relative relevance of attributes: supp(ωA) =

supp(ωP ) and ωA(a)/ωA(a
′) = ωP (a)/ωP (a

′) for any two relevant attributes a, a′ ∈ A.

(i) The players’ attribute weights satisfy ωA(a) = ω0ωP (a) for some ω0 ∈ R, and the set of single-

player samples is the same for both players.
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(ii) If ω0 ⩾ 1/2, a sample is optimal if and only if it is a single-player sample. Otherwise, the

empty sample is uniquely optimal.

Stronger forms of disagreement over attributes are necessary for attributes other than those in

the single-player samples to be optimal. In particular, the players might disagree on which attributes

are relevant: those in the overlap supp(ωA) ∩ supp(ωP ) are common attributes, whereas the rest of

the relevant attributes are idiosyncratic to one player. When does the agent find it optimal to sample

common attributes, idiosyncratic attributes, or even attributes irrelevant for both himself and the

principal?

These questions are tractable for NAP attribute covariances, for which the marginal value of each

attribute in the sample depends only on the neighboring sample attributes.20 For such covariances,

the agent does not benefit from sampling attributes which either him or the principal would put zero

sample weight on in their respective posterior values. Attributes that are ignored by either player

do not contribute to greater alignment between the decision and the agent’s value, which is the only

benefit of sampling. In fact, if the agent ignores the attribute but the principal does not, that at-

tribute hurts the agent because it provides information to the principal without increasing alignment.

Optimality requires that the agent assigns a non-zero sample weight whenever the principal does.

Corollary 2. Let σ satisfy NAP. Given any sample a ∈ Ak, (i) if τPj (a) = 0 for some aj ∈ a,

then VA(a) = VA(a \ {aj}), whereas (ii) if τPj (a) ̸= 0 but τAj (a) = 0 for some aj ∈ a, then VA(a) <

VA(a \ {aj}).

The corollary also clarifies a form of multiplicity that is disregarded without loss in the analysis.

A sample a∗ is optimal up to zero sample weights if a∗ solves (13) and τPj (a∗) ̸= 0 for each aj ∈ a∗.

Hereafter, we refer to a sample as optimal if and only if it is optimal up to zero sample weights.

No sampling of attributes irrelevant for both players. Because extrapolation is local, each

player assigns non-zero sample weights only to those irrelevant attributes that are closest to some

relevant attribute. In particular, if the principal’s set of relevant attributes is a single interval [aP , āP ],

the principal takes into account at most two irrelevant attributes, one on either side of this interval.

This suggests that irrelevant attributes possess limited value as a means of influencing the principal’s

decision. The following proposition establishes that attributes irrelevant for both players are in fact

never sampled. If an attribute is sampled, it must be relevant for one of them.

Proposition 7. Let σ satisfy NAP and supp(ωi) = [ai, āi] for each i. In any optimal sample a∗ ∈ Ak,

no attribute is irrelevant for both players: a∗ ⊂ [aA, āA] ∪ [aP , āP ].

Though this result mirrors that in Proposition 3 in the single-player benchmark, the intuition

for why irrelevant attributes are not strategically valuable is quite different. Suppose each player

has a single relevant attribute—say, aP for the principal and aA < aP for the agent—and the agent

20Lemma 4 in Appendix B, which is analogous to Proposition 1 for the principal-agent setting, derives the marginal
value of each attribute in a sample for the agent.

19



can sample at most one attribute. He chooses between sampling one of the two relevant attributes

or sampling an irrelevant one. First, sampling an irrelevant attribute strictly to the left of aA is

suboptimal. The covariance between the decision and the agent’s value that such sampling induces

is σ(a, aA)σ(a, aP ), whereas the informativeness for the principal is σ2(a, aP ). The closer a is to aA,

the more strongly the decision covaries with the agent’s value and the more informative sampling

is for the principal. However, the covariance between the decision and the agent’s value increases

faster because σ(a, aP ) = σ(a, aA)σ(aA, aP ) < σ(a, aA). The agent is strictly better off sampling

aA instead. Second, sampling any attribute between aA and aP leads to the players’ values being

independent conditional on the sample realization. Hence, the covariance between the decision and

the agent’s value is the same for any a ∈ (aA, aP ); the sample choice cannot affect the alignment

among the players. Because all else equal the agent prefers an attribute that is less informative for

the principal, he is better off sampling aA than sampling any a ∈ (aA, aP ).

Third, it is suboptimal to sample an irrelevant attribute that is further away from the agent’s

relevant attribute than the principal’s relevant attribute. The agent’s expected payoff from any such

a > aP is σ2(aP , a) (2σ(aA, aP )− 1) . Sampling in this region is beneficial if and only if σ(aA, aP ) ⩾

1/2, i.e., if the relevant attributes are not too far apart. But whenever this is the case, the agent’s

payoff decreases in a because σ2(aP , a) decreases in a. The covariance between the agent’s value and

the principal’s decision is more sensitive than the informativeness of the sample for the principal.

The agent is better off sampling aP instead.

Minimal sampling of idiosyncratic attributes. In a similar vein, attributes relevant to only one

player are of limited value to the agent. Depending on how the principal’s and the agent’s intervals of

relevant attributes overlap, each player pays attention to at most two idiosyncratic attributes of the

other player. This observation, along with Corollary 2, implies that the optimal sample can feature

at most two idiosyncratic attributes—the rest must be common attributes. If the players share no

common attributes, the optimal sample consists of at most two attributes, which are idiosyncratic by

necessity: one in supp(ωA) and the other in supp(ωP ). Therefore, larger sampling capacities k > 2

have no added value for the agent.

Proposition 8. Let σ satisfy NAP and supp(ωi) = [ai, āi] for each i.

(i) In any optimal sample a∗ ∈ Ak, at most two sample attributes are idiosyncratic.

(ii) If [aA, āA] ∩ [aP , āP ] = ∅, for any capacity k ≥ 1, any optimal sample consists of at most two

attributes, at most one of which is relevant for each player.

Maximal sampling of common attributes. Proposition 8 established that if the optimal sample

has n∗ ⩾ 2 attributes, at least (n∗− 2) of those must be common. However, if the players also assign

the same weights to common attributes—if these attributes are truly common, in the sense that the

players agree not only that these attributes are relevant, but also about the extent to which they are

relevant—more can be said about the number of common attributes that are optimally sampled. If

20



the agent finds it optimal to sample more than one common attribute, then the optimal sample must

exhaust the sampling capacity by including at least (k − 2) common attributes.

Proposition 9. Let σ satisfy NAP. Suppose that supp(ωi) = [ai, āi] for each i and ωA(a) = ωP (a)

for any common attribute a ∈ [aA, āA]∩ [aP , āP ]. Any optimal sample a∗ either (i) does not contain

any common attributes and |a∗| ⩽ 2, (ii) or it contains exactly one common attribute and |a∗| ⩽ 3,

or (iii) it contains at least (k − 2) common attributes and |a∗| = k.

Put differently, if the sampling capacity is large, that is, k ⩾ 4, and the optimal sample uses

the entire capacity, then it is guaranteed that the majority of the sample attributes are common.

The key observation is that if the sample already includes at least two common attributes, adding

a common attribute between those already present in the sample increases α1 and α2 by exactly

the same amount. The newly added attribute does not introduce any excessive uncertainty in the

principal’s decision. This is because the players assign the same sample weight to the newly added

attribute: this attribute is informative only about other common attributes in its neighborhood and

the players weigh common attributes in the same way. Therefore, the marginal value of the newly

added attribute equals the increase in the covariance between the decision and the agent’s value.

4.2 Strategic sampling for powered-exponential covariances

To see how the sampling of irrelevant attributes can be suboptimal if NAP is violated, we return to a

stylized example for the class of powered-exponential covariances. Each player has a single relevant

attribute ai with unit weight, and the agent is constrained to sample at most one attribute. For the

case of p = 1, for which NAP is satisfied, we know from Proposition 8 that the agent samples either

aA or aP—in fact it is immediate to show that he samples his own relevant attribute aA (Figure 7b).

As it turns out, this is the case more generally for any p ⩽ 1 (Figure 7a). For p > 1, however, the

optimal attribute is irrelevant for both players, and it is closer to the relevant attribute of the agent

than that of the principal (Figure 7c-7d).

(a) p = 1/2 (b) p = 1 (c) p = 3/2 (d) p = 2

Figure 7: Agent’s added payoff 2α2(a)− α1(a) from sampling {a} given A = [0, 1], aA = 1/10, aP = 9/10, ℓ = 3/5.

Proposition 10. Suppose k = 1 and the attribute covariance is a powered-exponential covariance

σp. Suppose ωi(ai) = 1 for some ai ∈ A and ωi(a) = 0 for any a ̸= ai.

(i) For any p ∈ (0, 1], the optimal sample consists of a∗ = aA.

(ii) For any p ∈ (1, 2], the optimal sample consists of an attribute a∗ strictly between aA and

(aP + aA)/2, which is irrelevant for both players. For any fixed p ∈ (1, 2], a∗ converges to
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(aP + aA)/2 as ℓ→ 0 and it converges to aA as ℓ→ +∞. For any fixed ℓ > 0, a∗ converges to

aA as p ↓ 1.

The key difference between attribute covariances with p ⩽ 1 and those with p > 1 rests on whether

irrelevant attributes between aA and aP align the principal’s decision with the agent’s value. As the

sample shifts further away from the agent’s relevant attribute and closer to the principal’s, the agent’s

sample weight σp(aA, a) decreases and the principal’s sample weight σp(a, aP ) increases. However,

for p ⩽ 1, the decrease in one sample weight is too large compared to the increase in the other; as a

result, the alignment α2(a) = σp(aA, a)σp(a, aP ) is below the alignment that either relevant attribute

attains α2(aA) = α2(aP ) = σp(aA, aP ). Sampling closer to the principal’s relevant attribute does

not lead to stronger alignment, but it costs in terms of greater informativeness for the principal. For

p > 1, on the other hand, the alignment attained by any irrelevant attribute between aA and aP is

strictly above that attained by either relevant attribute. As the sample shifts closer to aP , the gain

in alignment is first-order relative to the loss from greater informativeness for the principal. This

encourages the agent to sample an irrelevant attribute—a compromise between the players’ relevant

attributes.

Strategic sampling for the OU covariance. In what follows, we assume that each player has

a single interval of equally relevant attributes: ωi(a) = 1 for any a ∈ [ai, āi] and 0 otherwise. Let

∆i := āi − ai denote the mass of relevant attributes for player i. Proposition D.1 in Appendix D

establishes that the optimal sample is non-empty if and only if ∆A is sufficiently larger than ∆P , so

that the principal’s posterior value does not respond as strongly as that of the agent to the realization

of any singleton sample.

Strikingly, it is now suboptimal to sample any of the principal’s idiosyncratic attributes. This is

easiest to see if all relevant attributes are idiosyncratic, so that the optimal sample includes at most

one relevant attribute for each player. Consider aA < a∗1 < āA < aP < a∗2 < āP . The further to

the right a∗2 is, the less aligned the decision is with the agent’s value. Sampling such an attribute

is justified only if it guarantees lower informativeness for the principal. However, the principal’s

posterior variance is single-peaked in [aP , āP ]; due to the presence of a∗1 in the sample, aP is less

informative than āP for the principal. This means that the sample {a∗1, aP } is strictly preferred, in

terms of both sufficient statistics, to {a∗1, a∗2}. But the sample {āA} is even better than {a∗1, aP }
because it attains the same alignment while also being less informative for the principal.

Therefore, the agent always samples only one attribute among his relevant attributes, as derived

in Proposition 11. The stronger the attribute correlation is, the further away this optimal attribute

is from the principal’s interval. With almost independent attributes, the agent’s dominant concern

is generating alignment, hence a∗1 approaches the attribute that is most informative for the principal

among the agent’s relevant attributes. With highly correlated attributes, on the other hand, sup-

pressing informativeness for the principal takes priority, hence the optimal sample is either empty or

it approaches the most distant attribute that the agent is ever willing to sample.
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Proposition 11. Let [aA, āA] ∩ [aP , āP ] = ∅. For any k ⩾ 1,

(i) if non-empty, the unique optimal sample is a∗ = {a∗1} with a∗1 ∈ [aA, āA] given by

a∗1 =

−ℓ ln
(
eaA/ℓ + eāP /ℓ−eaP /ℓ

2

)
if āP < aA

−ℓ ln
(
e−āA/ℓ + e−aP /ℓ−e−āP /ℓ

2

)
if āA < aP ;

(15)

(ii) if a∗ is non-empty, its distance from [aP , āP ] strictly increases in ℓ;

(iii) as ℓ→ 0, a∗1 approaches aA if āP < aA and it approaches āA if āA < aP ;

(iv) as ℓ → +∞, then (a) for aA > āP , a
∗
1 approaches aA + ∆P

2 if ∆A ⩾ ∆P /2 and a∗ is empty

otherwise, (b) for āA < aP , a
∗
1 approaches āA − ∆P

2 if ∆A ⩾ ∆P /2 and a∗ is empty otherwise.

That idiosyncratic attributes are scarcely sampled becomes even clearer in the presence of common

attributes. Proposition 9 can be sharpened further for the OU covariance. First, whenever an

idiosyncratic attribute is sampled, it is always the agent’s, by a similar intuition to that outlined

above, and it is moreover the only attribute sampled. By contrast, if the optimal sample is not a

singleton—i.e., if the agent is willing to sample among common attributes—the entire sample must

consist of common attributes only. The agent resorts to a single idiosyncratic attribute if the principal

reacts too strongly to common attributes. This is more likely to be the case if the common attributes

are few, the principal’s idiosyncratic attributes are much more numerous than those of the agent,

and attribute correlation is sufficiently strong. Thus sampling an idiosyncratic attribute is a solution

of last resort for the agent.

Proposition 12. Let [aA, āA] ∩ [aP , āP ] ̸= ∅. In any non-empty optimal sample a∗ = {a1, . . . , an},
either (i) n = 1 ≤ k and a∗1 ∈ [aA, āA] \ [aP , āP ], or (ii) n = k and all attributes are common:

a∗j ∈ [aA, āA] ∩ [aP , āP ] for any j = 1, . . . , k.

Whenever the optimal sample consists of a single idiosyncratic attribute, the comparative statics

in correlation are similar to those in Proposition 11: the optimal attribute moves further away from

the principal’s relevant attributes. However, how the optimal common attributes vary with attribute

correlation is more subtle, since it depends on how large the mass of common attributes is. For a

clean illustration, we parametrize [aA, āA] = [0, α] and [aP , āP ] = [1 − α, 1] so that ∆A = ∆P = α

and α ∈ (1/2, 1] is a proxy for the degree of agreement. It is straightforward to show that for any

degree of correlation the optimal sample is non-empty and it consists of common attributes only.21

Figure 8a illustrates the comparative statics.

For α ≈ 1, the relevant attributes for the two players almost coincide. The optimal sample ex-

pands with stronger correlation in a similar fashion to the single-player benchmark. As disagreement

increases, though, the agent becomes increasingly more concerned about the variability of the prin-

cipal’s decision. Hence, the entire sample shifts towards (1− α) as correlation becomes stronger, in

21It is non-empty because τA(1−α) > τP (1−α) > 0, hence 2α2({1−α})−α1({1−α}) > 0. It consists of common
attributes only because VA({a}) − VA(∅) = ℓ2e(a−1)/ℓ(eα/ℓ − 1)

(
4 + e(a−1)/ℓ − 2e−a/ℓ − 2e(a−α)/ℓ − e−(1−α−a)/ℓ

)
is strictly increasing in a ∈ [0, 1− α).
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(a) Optimal sample for k = 4 from ℓ = 0.02 (blue)
to ℓ = 0.8 (red) and α ∈ {0.75, 0.8, 0.95} from top to
bottom.

`

expected loss

α = 0:95

α = 0:8

α = 0:75

(b) Expected loss net the prior bias (νP
0 − νA

0 )2.

Figure 8: The range of correlation is ℓ ∈ (0.02, 0.8) in increments of 0.05 for both panels.

a similar fashion to the comparative statics of Proposition 11 for the singleton sample with idiosyn-

cratic attributes. In the limit as ℓ → +∞, the sample virtually collapses to {1 − α}. On the other

hand, Figure 8b shows the expected loss attained by the optimal sample as a function of ℓ. As in

the single-player benchmark, moderate attribute correlation leads to the greatest loss for the agent.

5 Discussion

5.1 Testable implications for product evaluation

Our findings have implications for empirical research on attribute-based product evaluation. Ample

evidence from consumer research suggests that, when evaluating a product, consumers draw corre-

lational inferences across its attributes. They rely on their beliefs about how the realizations of any

two attributes covary in order to infer unobserved attributes from observed ones.22 For example, in

the context of consumers evaluating automobiles, Mason and Bequette (1998) establish that experi-

enced consumers hold accurate and stable beliefs about the pairwise covariance of the automobile’s

attributes.23 Our results speak directly to two central concerns in this literature: the possibility of

reversals in the direction of inference and the value of learning irrelevant attributes.

Inference reversals. Does a higher realization of a desirable (resp., undesirable) attribute always

lead to a higher (resp., lower) estimated value for the product, and how does the direction of such in-

ference depend on the presence of other attributes in the sample? Huber and McCann (1982) address

this in a simple setting with only two correlated attributes {a, a′}. They show, both theoretically

and experimentally, that the sample weight that the consumer assigns to the realization of attribute

a when estimating the value of the product can have the opposite sign to the attribute weight ω(a).

That is, a higher realization of a desirable attribute can decrease the consumer’s willingness to pay

for the product. This is due to the inference drawn from a to a′: if the two attributes are conflicting,

in the sense that ω(a)ω(a′)σ(a, a′) < 0, the direct contribution ω(a) to the product’s estimated value

22For recent surveys on correlational inference in attribute-based decisions, see Scheibehenne, von Helversen and
Rieskamp (2015) and Walters and Hershfield (2020).

23They elicit the consumers’ beliefs about how attributes covary by asking questions such as “If an automobile is
rated high in net horsepower, how likely is it also to be rated high in acceleration?” for each attribute pair.
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goes against the indirect (inferential) contribution ω(a′)σ(a, a′). Attribute correlation is critical to

such inference reversal, which would not be possible with independent attributes. With a larger

attribute space, this insight becomes both more general and more nuanced.

First, as in the two-attribute setting above, the sample weight of an attribute need not have the

same sign as its attribute weight, even if that were the only attribute sampled. The sample weight

of a = {a1} is

τ(a1) =

∫
A
ω(a)σ(a, a1) da,

which reflects the inferences that the player draws from a1 to all other relevant attributes. This

generalizes the notion of conflicting attributes in Huber and McCann (1982) to more than two

attributes: a1 conflicts with the rest of the attribute space if ω(a)σ(a, a1) < 0 for a sufficiently

large number of relevant attributes. Example E.1 in Online Appendix E illustrates such reversal in

a setting with perfectly correlated attributes in which high realizations for some attributes imply

low realizations for others. A desirable attribute that is negatively correlated with sufficiently many

other relevant attributes is weighted negatively even if it is the only attribute sampled.

With more than two attributes a second form of inference reversal becomes possible: an attribute

can be weighted positively (resp., negatively) in the singleton sample but negatively (resp., positively)

in a larger sample. Whether an attribute realization implies a higher or lower willingness to pay for

the product depends on other observed attributes. Example E.2 illustrates such reversal in a setting

with only desirable attributes and an attribute covariance that violates NAP. Any singleton sample

carries a positive sample weight, but there exist two-attribute samples for which one of the sample

weights is negative. The negative weight arises because the sample features excessive redundancy.

Whereas the first form of inference reversal is consistent with the evidence in Huber and McCann

(1982), this second form is novel and remains to be tested in future research in settings with more

than two attributes. Moreover, our analysis sheds light on properties of the attribute covariance that

make such reversals possible: in settings in which the relevant attributes are either all desirable or

all undesirable, an inference reversal is possible only if the attribute covariance violates NAP.24

For strategic settings in which a non-unitary consumer evaluates the product—say, one household

member examines attributes and another decides on whether to purchase the product—Theorem 2

suggests that the direction of inference from the optimal sample is on average the same for the two

players, because τPj (a) must have the same sign as τAj (a) when averaged properly across all sample

attributes. More can be said if the underlying attribute covariance satisfies NAP: by Lemma 4, for

any optimally observed attribute, a higher realization is either good news for both players’ values

or bad news for both. How consumers draw attribute inferences in such strategic evaluation is a

promising direction for future research on product evaluation.
24This is an immediate implication of Corollary 1.
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The value of irrelevant attributes. What can be inferred about the consumer’s preference for

certain attributes from observing the attributes that she focuses on when evaluating the product?

With independent attributes, the consumer optimally focuses on attributes that are directly relevant;

so it is reasonable to infer that attributes that are observed enter directly the consumer’s value for

the product. However, this need not be the case in the presence of attribute correlation. Our results

clarify that whether extrapolation across attributes is local is an important determinant of whether

the consumer decides to learn from irrelevant attributes. If the attribute covariance satisfies NAP in

a given empirical setting, then it is reasonable to conclude that the observed attributes are directly

relevant for the consumer.25 This holds for product evaluation by a non-unitary consumer as well:

the observed attributes must be relevant for at least one of the players involved in the evaluation.

A second insight that emerges from our analysis is that there exist attribute covariances for which

the consumer responds more strongly after observing an irrelevant attribute than a relevant one. This

stands in contrast to the finding in Mason et al. (2001) that observing a relevant attribute leads to a

more precise product rating than observing an irrelevant one. We provide a theoretical justification

for why a Bayesian consumer might be highly sensitive to irrelevant attributes when extrapolation

from observed attributes is non-local.

5.2 A similarity interpretation of attribute correlation

Because σ encodes the pairwise correlation across attributes, it is a natural measure of similarity be-

tween attributes.26 When extrapolating to out-of-sample attributes, the player reasons by similarity.

Each sample attribute is weighted by its average similarity to out-of-sample attributes, while also

accounting for its similarity to the rest of the sample.27 First, how similar the attributes of a project

are dictates how uncertain the project is in its entirety. The ex ante uncertainty about the project’s

value v can be rewritten as∫
A

∫
A
σ(a, a′)ω(a)ω(a′) dada′ = Ea,a′∼ω[σ(a, a

′)]. (16)

The right-hand side corresponds to the similarity of a randomly drawn pair of attributes, where

attributes are drawn independently in the pair and the probability of attribute a being drawn is

ω(a).28 The more similar the relevant attributes are on average, the more their realizations tend to

25Beyond whether the observed attributes are relevant, Proposition 1 has implications for the extent to which they are
relevant: all else equal, the relevance of attributes within a neighborhood of an observed attribute must be significant
in order for the sample weight of the observed attribute to be significant. The consumer benefits little from sampling
an attribute which is of negligible relevance and the attributes close to which are also of negligible relevance. In the
context of strategic sampling, Lemma 4 implies that attributes with negligible sample weights for one of the players
will not be optimally sampled—their marginal value is too low.

26Given covariance σ, a dissimilarity metric can be defined as dσ(a, a′) :=
√

1
2
(1− σ(a, a′)) ∈ [0, 1]. The higher

(resp., lower) σ(a, a′) is, the more similar (resp., dissimilar) attributes a and a′ are.
27This is related to case-based reasoning, in particular to statistical procedures such as similarity-weighted averaging

in Gilboa, Lieberman and Schmeidler (2006). The key conceptual difference is that here the players know the set of
possible mappings f and derive sample weights via Bayesian updating, whereas Gilboa, Lieberman and Schmeidler
(2006) posit and axiomatize a particular form for the sample weights without assumptions on the underlying f .

28See Lemma 3(ii) for why the attribute weights ω can be interpreted as a well-defined probability density over the
attribute space.
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move together, hence the more uncertain the project is. Analogously, the ex ante covariance between

the principal’s and the agent’s values is given by∫
A

∫
A
σ(a, a′)ωA(a)ωP (a

′) dada′ = Ea∼ωA,a′∼ωP
[σ(a, a′)] , (17)

which corresponds to the similarity between a pair of random attributes, one drawn from density ωA

and the other from ωP . Intuitively, the more similar the attributes that are relevant to the agent are

to those of relevance to the principal, the more the players’ values for the project covary together.

Second, after a sample a is discovered, the similarity across the remaining attributes is updated to

σa(a, a
′) = σ(a, a′)−

(
σ(a, a1), . . . , σ(a, an)

)
Σ−1(a)

(
σ(a′, a1), . . . , σ(a

′, an)
)⊤

. The residual uncer-

tainty about the project now corresponds to the average similarity between out-of-sample attributes

Ea,a′∼ω[σa(a, a
′)]. Single-player sampling of Theorem 1 leads to the greatest reduction in the average

attribute similarity—it makes out-of-sample attributes as dissimilar ex post as possible. As it turns

out, for the OU covariance, dividing the attribute space into two equally sized intervals minimizes

such attribute similarity. Any singleton sample {a} divides the attribute space A = [0, 1] into two

independent attribute intervals [0, a] and [a, 1]. The larger one interval is relative to the other, the

more similar the attributes are on average ex post.

The sample weight τj(a) quantifies the similarity of attribute aj ∈ a to the rest of the attribute

space. It considers not only how similar aj is to a random attribute, i.e., Ea∼ω[σ(a, aj)], but also

how similar aj is to other sample attributes which in turn might be similar to that random attribute:

τj(a) =

k∑
m=1

(
Σ−1(a)

)
j,m

Ea∼ω[σ(a, am)].

The (m, j)th entry of Σ−1(a)—the partial correlation between f(am) and f(aj)—captures how sim-

ilar attributes aj and am are conditional on the rest of the sample. Therefore, the sample weight

aggregates all the channels of similarity from aj to a randomly drawn attribute. It reduces to simply

Ea∼ω[σ(a, aj)] if aj is independent of other sample attributes.

5.3 Related work

The paper builds on the literature on costly attribute discovery, to which it contributes the modeling

of attribute correlation. Klabjan, Olszewski and Wolinsky (2014) study costly discovery from a

finite set of independent attributes. They show that if the attributes are ordered in the sense of

second-order stochastic dominance (SOSD) and the heterogeneity in discovery costs is small, the

optimal sample consists of SOSD-dominated attributes. In contrast, we focus on correlation within

a continuum of attributes and abstract away from heterogeneity in costs. There is, however, a

common thread between our characterization and theirs: Theorem 1 establishes that the distribution

over posterior values induced by the single-player sample is SOSD-dominated.29 Branco, Sun and

Villas-Boas (2012) also explore learning over a continuum of Gaussian attributes of a single object.

29In our framework, attributes are not necessarily ordered in the SOSD sense, but the distributions over posterior
values induced by attribute samples are.
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However, their attributes—modelled as infinitesimal Brownian increments—are independent and are

discovered in an exogenously fixed order.30 Ke, Shen and Villas-Boas (2016) extend this framework

to search over several multi-attribute products, in which there is correlation across products but not

across attributes of the same product. Neeman (1995), Olszewski and Wolinsky (2016), Sanjurjo

(2017), and Geng, Pejsachowicz and Richter (2017) also consider search across several objects with

independent attributes. In recent work, Liang, Mu and Syrgkanis (2021) study dynamic costly

learning from a finite set of correlated Gaussian attributes. If the attribute space is arbitrarily large,

their main characterization holds only if attributes are approximately independent. By contrast, we

have a flexible covariance over a continuum of attributes but no temporal costs. Second, they study

sampling by a single forward-looking agent, whereas we focus on strategic sampling.

Second, our analysis of strategic sampling is related to a large literature on agency frictions in

information production, in particular to models of persuasion through flexible information design

(Brocas and Carrillo (2007), Rayo and Segal (2010), Kamenica and Gentzkow (2011)), Wald per-

suasion games (Henry and Ottaviani (2019)), and persuasion with multi-dimensional information

(Glazer and Rubinstein (2004), Sher (2011)). We share with these papers the assumptions of (i)

commitment in information disclosure and (ii) symmetrically informed players but asymmetric au-

thority to produce information. The attribute structure, however, introduces two peculiar features.

First, in contrast to flexible information design, the correlation structure constrains and shapes the

set of posterior belief distributions that can be generated through sampling. The elegant tools of in-

formation design cannot be invoked in this setting. Second, the preferences of both the principal and

the agent are attribute-dependent. Another important line of work has focused on the incentives to

produce and disclose hard evidence (Shavell (1994), Che and Kartik (2009), Eliaz and Frug (2018)).

We abstract away from disclosure incentives in order to tackle the question of which attributes are

discovered in the presence of attribute correlation. (Di Tillio, Ottaviani and Sørensen, 2017a,b) also

study strategic sample selection, but they do so in a context with state-independent preferences and

disclosure of private signals. In contrast to Banerjee et al. (2020), our framework features a single

principal and there is no value from randomization over samples. Our analysis also relates to Hirsch

(2016) in the agent’s tradeoff between learning and influence, however disagreement here arises due

to different attribute weights rather than beliefs.

The paper also contributes to a literature starting with Aghion et al. (1991) on optimal exper-

imentation over a rich space of information sources. A productive approach in this literature has

modelled unknown payoffs from experimentation through a Brownian sample path (Jovanovic and

Rob (1990), Callander (2011), Garfagnini and Strulovici (2016), Callander and Hummel (2014)). Our

model departs from this work in two respects. First, the Brownian motion is a special case of the

class of Gaussian processes that we introduce.31 Two recent exceptions are Ilut and Valchev (2023)

30Branco, Sun and Villas-Boas (2012) briefly discuss the case of correlated attributes. Notably, in their framework,
the case of correlated attributes simplifies to that of independent attributes in which attribute variance decreases the
latter the attribute is in the fixed order.

31Bardhi (2018) relied on such a Brownian structure.
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and Bardhi and Bobkova (2023), which model payoffs through other Gaussian processes. Second,

the payoff-relevant statistic here is the area under the sample path rather than a maximum of the

path—indeed, this crucial feature differentiates attribute discovery from search. In this respect our

model relates to Callander and Clark (2017), Ilut and Valchev (2023), and Bardhi and Bobkova

(2023), in that players’ payoff depends on the entire sample path. However, in Ilut and Valchev

(2023) the problem is not one of sampling; in Callander and Clark (2017) the higher court samples

legal cases, but the nature of the adoption problem faced by the lower court differentiates this model

from attribute learning32; and in Bardhi and Bobkova (2023) each citizen can sample only his own

local evidence, which corresponds to a single attribute.

5.4 Robustness and extensions

Multidimensional / finite attribute space. Section 2.1 models the attribute space as a contin-

uum of one-dimensional attributes. The continuum of attributes allows for a continuous covariance—

which makes transparent the role of attribute correlation—and fine-tuning in sampling. The one-

dimensional attribute space allows for a clean statement of the nearest-attribute property. However,

a finite and/or unordered attribute space might be natural when inspecting the attributes of an

automobile (e.g., horsepower, color, weight etc.). Moreover, multidimensional attributes are natural,

for instance, when an employer seeks to learn a worker’s performance across a variety of hypothetical

situations that might arise on the job and that invoke a combination of a hard skill h ∈ R and

a soft skill s ∈ R—in such a case, each situation (s, h) is an attribute and f(s, h) is the worker’s

performance in it.

Our basic methodology allows for a finite attribute space and can be extended easily to the case

of a multidimensional attribute space: extrapolation in section 2.2, as well as Theorems 1 and 2 are

fully general. They only rely on the joint Gaussian distribution of the attributes, be those one- or

multidimensional.33 The feasible region of (α1, α2) can be constructed in a similar way, and it is finite

if A is finite. The framework can also accommodate constraints on which attributes are discoverable:

e.g., a finite subset of attributes Ã ⊂ A within a larger, and potentially infinite, attribute space A
that are accessible for sampling.

General prediction problem. A general decision problem that nests our setup has the following

structure: player i obtains ex-post payoff u(d, vi) where d ∈ D is a decision made by the principal,

D is a set of available decisions, and vi is the value of the project for player i. E.g., D = {0, 1}
and (u(1, vi), u(0, vi)) = (vi, ri) where ri is a reservation value, or D = R and u(d, vi) = −|d − vi|.
First, any such problem is a prediction problem: the principal takes a decision based on her posterior

value νP (a) and the agent’s expected payoff EvA,f(a)

[
u(d∗(νP (a)), vA)

]
is determined by the joint

32In Callander and Clark (2017) optimal case selection does not consist of the most uncertain legal case. Similarly,
the most uncertain attribute is not the most informative in section 3. See also Remark 1.

33The Gaussian structure is consistent with the principle of maximum ignorance: given (µ, σ), the players adopt the
least informative (entropy-maximizing) prior distribution over attribute realizations, which is a multivariate Gaussian.
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distribution of
(
vA, ν

P (a)
)
. Because this distribution is Gaussian, the two sample-specific moments

α1(a) and α2(a) (as defined in Theorem 2) are sufficient statistics for the agent’s sampling problem.

Second, the attribute covariance still determines the feasible (α1, α2) pairs as discussed in section

4.1. What varies with the decision problem is the tradeoff between α1 and α2. For the case of D = R
and u(d, vi) = −(d − vi)

2, this tradeoff is linear and does not depend on the prior values (νA0 , ν
P
0 ),

which makes possible a sharp characterization of optimal sampling. In other decision problems the

tradeoff might be more complex, e.g., in the binary decision setup, the tradeoff is non-linear and it

depends on (νA0 , ν
P
0 ).34

Disagreement about the attribute covariance. An alternative plausible source of conflict

between the principal and the agent would be disagreement about the attribute covariance rather

than the attribute weights, i.e., ωA = ωP = ω but σA ̸= σP . In such a case, the extrapolated mapping

in Lemma 1 is different across players and the sample weights in equation (8) are instead given by

τ ij(a) =

∫
A
τ ij(a;a)ω(a) da.

Given these sample weights, the characterization in Theorem 2 continues to hold. But note that, as

long as σP (a, aj) ̸= 0 for all a ∈ A and aj ∈ a, the agent’s singleton sample weight in equation (14)

can be rewritten as

τA(aj) =

∫
A

(
ω(a)

σA(a, aj)

σP (a, aj)

)
σP (a, aj) da =:

∫
A
ω̂A,j(a)σP (a, aj) da.

In this way, the problem of disagreement about the covariance can be reformulated as one of dis-

agreement about attributes weights, where ωP = ω, ωA = ω̂A,j , and the common covariance is σP .

However, the caveat is that the agent’s attribute weight is now dependent on the sample attribute,

hence the subscript j—it is as if the sample choice has a framing effect on how the agent views the

relevance of different attributes.

Project choice and complexity. A promising direction for future work is the modeling of choice

between multiple projects in this framework. For instance, a consumer might evaluate two or more

competing products before deciding whether to purchase one of them. In this more general framework,

product j is described by an attribute space Aj and an attribute covariance σj on Aj × Aj . The

attribute mappings are drawn independently across products. For instance, each σj can be an OU

covariance defined on Aj = [0, 1] with parameter ℓj > 0: the available products vary in their prior

uncertainty and in how difficult they are to evaluate. The consumer chooses a sample of attributes to

be sampled across all products. An immediate implication of our analysis is that the consumer need

not ultimately purchase the product with the highest sample realizations, even if all products start

with the same prior value, because the corresponding sample weights might be too small due to weak

attribute correlation. Moreover, the consumer’s choice of sample balances the informativeness of its

attributes across available products; for example, this balances the depth of learning that comes from

34An earlier version of this paper considered such a binary decision setup. See Appendix E.2.
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discovering the most informative attribute of a specific product with the breadth that comes from

learning an attribute that is moderately informative across products. Taking this setup further, this

is a natural setup to investigate market competition in product design, i.e., the equilibrium choice of

attribute correlation by competing firms (Spiegler, 2016).

Implications for strategic site selection. Evaluation through small-scale pilot studies can be

understood as a problem of attribute discovery. Allcott (2015) observed empirically the presence of

site selection bias in the initial rollout of an energy conservation program: the pilot sites, which were

selected by the utility companies involved in the program, were too similar and higher-performing

than the average site. The findings of section 4 offer one rationale for such low external validity.

Consider a policymaker who cares about the average impact of a program across all demographic

groups a ∈ A = [0, 1] but has to rely on pilot sites selected by a program advocate (the utility

company), whose focus has traditionally been on a subset of demographic groups [0, α] ⊂ [0, 1]—for

example, because these groups are expected to experience higher impact and have been traditionally

more profitable for the company. If NAP is a plausible feature of the impact of the program across

the population, then Corollary 9 suggests that the advocate will focus his selection of pilot sites

in the overlap [0, α]. This maximizes alignment between their interests while keeping in check the

volatility of the policymaker’s evaluation of the program.
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A Preliminaries on Gaussian processes

Definition A.1 (Validity of the attribute covariance). The covariance σ(a, a′) is symmetric if

σ(a, a′) = σ(a′, a) for any (a, a′) ∈ A2. It is positive semi-definite if for any f ∈ L2(A),∫
A

∫
A
σ(a, a′)f(a)f(a′) da da′ ⩾ 0.

Alternatively, σ is positive semi-definite if and only if for any n ∈ N, any finite sample {a1, . . . , an} ⊂
A and any vector x = (x1, . . . , xn) ∈ Rn \ {0},

∑n
i=1

∑n
i=1 xixjσ(ai, aj) ≥ 0.

Definition A.2. Let Ω be an outcome space. A process f is sample-path continuous at a0 ∈ A if,

for almost all ω ∈ Ω, a→ a0 implies f(ω, a) → f(ω, a0). The process is sample-path continuous if it

is sample-path continuous at any a0 ∈ A.

It is straightforward that the continuity of µ is necessary for sample path continuity. Without

loss, the following two propositions normalize µ to zero. Moreover, Proposition 13 normalizes the

attribute space without loss to [0, 1]d, where d ⩾ 1.

Proposition 13. Let A = [0, 1]d, d ≥ 1 and f be a zero-mean Gaussian process with covariance σ.

If there exist β,K > 0 such that σ(a, a) + σ(a′, a′)− 2σ(a, a′) ⩽ K|a− a′|d+β for all a, a′ ∈ A, then

f has a modification on A that is sample-path continuous.

Proof of Proposition 13. By Kolmorogov’s Continuity Theorem, such a continuous modification ex-

ists if there exist α, β,K > 0 such that E[|f(a) − f(a′)|α] ≤ K|a − a′|d+β for all a, a′ ∈ A. Letting
α = 2 and using the fact that µ(a) = 0 for any a ∈ A, the LHS becomes E[|f(a) − f(a′)|2] =

E[f(a)2] + E[f(a′)2]− 2E[f(a)f(a′)] = σ(a, a) + σ(a′, a′)− 2σ(a, a′). If this is less than K|a− a′|d+β

for some β,K > 0, a continuous modification of f exists.

Proposition 14. Let µ(a) = 0 for all a ∈ A. If f(a) is sample-path continuous at a = a1, a2 ∈ A,

then σ(a, a′) is continuous at (a, a′) = (a1, a2).

Proof of Proposition 14. First, if f is sample-path continuous at some a1, a2 ∈ A, then

lim
a→a1

E
[
(f(a)− f(a1))

2
]
= lim

a→a2

E
[
(f(a)− f(a2))

2
]
= 0.

Therefore, f is mean-square continuous at a = a1, a2.
35 Also, note that σ(a, a′) − σ(a1, a2) =

(σ(a, a′)− σ(a1, a
′)) + (σ(a1, a

′)− σ(a1, a2)) . But |σ(a, a′)− σ(a1, a
′)| = |E [(f(a)− f(a1)) f(a

′)] | ≤√
E
[
(f(a)− f(a1))

2
]√

E [f(a′)2], where the inequality follows from the Cauchy-Schwarz inequality

for expectations. Because f is mean-square continuous at a1, the term

√
E
[
(f(a)− f(a1))

2
]
vanishes

to zero as a → a1. Hence, lima→a1 |σ(a, a′)− σ(a1, a
′)| = 0. By a similar logic, lima′→a2 |σ(a1, a′)−

σ(a1, a2)| = 0. Therefore, lima→a1 lima′→a2 σ(a, a
′) = σ(a1, a2) which means that σ(a, a′) is continu-

ous at (a1, a2).

Lemma 3. Fix σ and (ωA, ωP ).

(i) There exist an outcome-equivalent covariance σ̃ and pair of weights (ω̃A, ω̃P ) such that σ̃(a, a) ∈
{0, 1} for any a ∈ A. Moreover, for any a, a′ ∈ A for which σ(a, a), σ(a′, a′) > 0,

σ̃(a, a′) :=
σ(a, a′)√

σ(a, a)σ(a′, a′)
, ω̃i(a) := ωi(a)

√
σ(a, a) ∀i ∈ {A,P}

35For Gaussian processes, sample-path continuity implies mean-square continuity, but the converse need not hold.
See Theorem 2 in Cambanis (1973).
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and for any a ∈ A for which σ(a, a) = 0 and any other a′ ∈ A, σ̃(a, a′) := σ(a, a′) = 0 and

ω̃(a) := ω(a).

(ii) In the single-player benchmark, without loss ω(a) ⩾ 0 for any a ∈ A and∫
A
ω(a) da = 1.

Proof of Lemma 3. (i) Let τ i and τ̃ i denote player i’s sample weights corresponding to σ and σ̃ respec-

tively. Let R(a) denote the correlation matrix for sample a and D(a) the diagonal matrix with the jth

entry being
√
σ(aj , aj). Then Σ(a) = D(a)R(a)D(a) and therefore Σ−1(a) = D−1(a)R−1(a)D−1(a).

By the expression in Lemma 1, we have

τ̃ ij(a;a) =
τ ij(a;a)√
σ(a, a)

√
σ(aj , aj).

From here, we obtain that τ̃ ij(a) = τ ij(a)
√
σ(aj , aj), which implies that α̃1(a) = α1(a) and α̃2(a) =

α2(a) in Theorem 2. Hence, (σ̃, ω̃A, ω̃P ) is outcome-equivalent to (σ, ωA, ωP ).

(ii) First, for any a ∈ A such that ω(a) < 0, redefine its realization as f̃(a) = −f(a). Moreover, let

Ω :=

∫
A
|ω(a)|da, ω̃(a) :=

|ω(a)|
Ω

.

The integrability of ω implies the absolute integrability of ω, hence Ω < ∞. Therefore, ω̃ is well-

defined, everywhere positive, and its integral over A equals one.

B Main proofs

Proof of Lemma 1. (i) The joint Gaussian distribution is given by(
f(â)

f(a)

)
∼ N

((
µ(â)

µ(a)

)
,

(
σ(â, â) Σ(â,a)

Σ(â,a)⊤ Σ(a)

))
where Σ(â,a) = cov (f(â), f(a)) =

(
σ(a1, â) . . . σ(an, â)

)
and Σ(a) is the sample covariance ma-

trix. Hence, E[f(â) | a, f(a)] = µ(â) + Σ(â,a)[Σ(a)]−1 (f(a)− µ(a)) . Moreover, sample realizations

are observed perfectly. So, for any (a, f(a)) and any aj ∈ a, E[f(aj) | a, f(a)] = f(aj). Therefore,

τj(aj ;a) = 1 and τm(aj ;a) = 0 for m ̸= j.

(ii) First suppose that µ(a) = 0 for all a ∈ A. Applying part (i),

νi(a) =

∫
A
E[f(a) | a, f(a)]ωi(a) da

=

∫
A
(τ1(a;a)f(a1) + . . . τn(a;a)f(an))ωi(a) da =

n∑
j=1

f(aj)

(∫
A
τj(a;a)ωi(a) da

)
.

For any j ∈ {1, . . . , k}, (νi(a) − νi0) and (f(aj) − µ(aj)) are centered at zero. Therefore, for an

arbitrary mean µ : [0, 1] → R, we have

νi(a)− νi0 =

n∑
j=1

(∫
A
τj(a;a)ωi(a) da

)
(f(aj)− µ(aj)).
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Proof of Lemma 2. (iii) ⇒ (ii): Suppose f is Markov. Then, for any finite selection of realizations

f(a1), . . . , f(an) for a1 < a2 < . . . < an and any i ⩽ m ⩽ j,

σ(ai, aj) = EFm
[E[f(ai)f(aj) | Fm]] = EFm

[f(ai)E[f(aj) | Fm]]

= EFm
[f(ai)E[f(aj) | f(am)]] = EFm

[
f(ai)

σ(aj , am)

σ(am, am)
f(am)

]
=

σ(aj , am)

σ(am, am)
σ(ai, am),

where Fm is the filtration generated by {f(a) : 0 ⩽ a ⩽ am}. The first equality uses the definition

of the covariance and the Law of Iterated Expectations, the second equality follows from i ⩽ m ⩽ j,

the third equality follows from the Markov property of f , the fourth equality follows from the jointly

Gaussian distribution of f(aj) and f(am), and the last equality uses E[f(ai)f(am)] = σ(ai, am).

From Lemma B.3, σ(am, am) = 1.

(ii) ⇒ (iii): Suppose σ satisfies the triangle property in (ii), and let i ⩽ m ⩽ j. For f to be Markov,

it is sufficient to show that E[f(aj) | Fm] = E[f(aj) | f(am)]. Consider

E
[(

E[f(aj) | Fm]− σ(am, aj)

σ(am, am)
f(am)

)
f(ai)

]
= E

[
E[f(ai)f(aj) | Fm]− σ(am, aj)

σ(am, am)
f(am)f(ai)

]
= σ(ai, aj)− E[f(ai)f(am)]

σ(am, aj)

σ(am, am)
= 0,

where the first equality is because f(ai) for i ⩽ m is a constant with respect to Fm, the second equality

uses the Law of Iterated Expectations, and the last equality uses (ii). Therefore, E[f(aj) | Fm] −
σ(am,aj)
σ(am,am)f(am) is independent of f(a1), . . . , f(am). But attribute realizations are jointly Gaussian,

so E[f(aj) | Fm]− σ(am,aj)
σ(am,am)f(am) is a linear combination of f(a1), . . . , f(am). Therefore,

E[f(aj) | Fm]− σ(am, aj)

σ(am, am)
f(am) = 0 ⇒ E[f(aj) | Fm] =

σ(am, aj)

σ(am, am)
f(am) = E[f(aj) | f(am)].

(i) ⇒ (ii): Suppose that σ satisfies NAP. Then, for any a1 < a2 < . . . < an and any a > an,

E[f(a) | Fn] = E[f(a) | f(an)] where Fn is the filtration generated by {f(â) : 0 ⩽ â ⩽ an}. Hence, f

is Markov. By the argument above, σ satisfies the triangle property.

(ii) ⇒ (i): We use the following result from Barrett and Feinsilver (1978).

Claim 1 (Theorem 1, Barrett and Feinsilver (1978)). A positive definite symmetric matrix has the

triangle property if and only if its inverse is tridiagonal.

Fix a ∈ Ak and let Σ := Σ(a) be its positive definite and symmetric covariance matrix. The

theorem implies that Σ−1 is tridiagonal for any sample a, i.e., Σ−1
ij = 0 for any |i−j| > 1. Fix â ∈ A.

Equation (6) simplifies to

τj(â;a) =


σ(â, a1)Σ

−1
11 + σ(â, a2)Σ

−1
12 if j = 1

σ(â, aj−1)Σ
−1
j−1,j + σ(â, aj)Σ

−1
jj + σ(â, aj+1)Σ

−1
j+1,j if j = 2, . . . , n− 1

σ(â, an−1)Σ
−1
n−1,n + σ(â, an)Σ

−1
nn if j = n.

From Barrett and Feinsilver (1978), the entries of the inverse of the covariance matrix are

Σ−1
11 =

σ(a2, a2)

d12
,Σ−1

jj = σ(aj , aj)
dj−1,j+1

dj,j+1dj−1,j
,Σ−1

nn =
σ(an−1, an−1)

dn−1,n
,Σ−1

ij = −σ(ai, aj)
dij

if |i − j| = 1 for the latter, where dij = σ(ai, ai)σ(aj , aj) − σ2(ai, aj). All other entries of Σ−1

are zero. Substituting these expressions into τj(â;a) we obtain that (1) if â < a1, then τ1(â;a) =
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σ(â, a1)/σ(a1, a1) and τj(â;a) = 0 for j ̸= 1; (2) if ai < â < ai+1, where i = 1, . . . , n− 1, then

τj(â;a) =


σ(â, ai)σ(ai+1, ai+1)− σ(â, ai+1)σ(ai, ai+1)

di,i+1
if j = i

σ(â, ai+1)σ(ai, ai)− σ(â, ai)σ(ai, ai+1)

di,i+1
if j = i+ 1

0 otherwise;

(18)

(3) if â > an, then τn(â;a) = σ(â, an)/σ(an, an) and τj(â;a) = 0 for j ̸= n.

Proof of Corollary 1. The sample weights follow immediately from summing up the weights τj(â;a)

derived in the proof of Lemma 2 over â ∈ A. A useful fact for such simplification is that NAP implies

σ(a, ai)− σ(a, ai−1)σ(ai, ai−1) = σ(a, ai)
(
1− σ2(a, ai−1)

)
for any a ∈ (ai−1, ai).

To show that σ(a, a′) ⩾ 0 for any a, a′ ∈ A, we suppose, by contradiction, that there exist

distinct attributes a1 < a2 such that σ(a1, a2) < 0. Because σ(a1, a1) ⩾ 0 by the definition of

attribute variance and σ(a1, a) is continuous in a by Assumption 1, there exists a0 ∈ (a1, a2) such

that σ(a1, a0) = 0. Given that σ satisfies NAP, σ(a1, a2) = σ(a1, a0)σ(a0, a2) = 0, which leads to a

contradiction. Hence, σ(a, a′) ⩾ 0 for any a, a′ ∈ A.

By Lemma B.3, for any j, 1 − σ2(aj−1, aj) ⩾ 0 because σ(aj−1, aj) ⩽ 1. Moreover, for a ∈
(aj−1, aj), σ(a, aj)

(
1− σ2(aj−1, a)

)
⩾ 0 and σ(ai−1, a)

(
1− σ2(a, ai)

)
⩾ 0 by the argument above.

Therefore, if ωi does not switch sign over A, the sample weights τ ij have the same weight as ωi.

Proof for Theorem 1. Fix a ∈ Ak. Given (a, f(a)), the player’s expected value for the project is

ν(a), from Lemma 1. The player’s expected payoff from sampling a is the negative of the mean

squared error, hence it takes the variance-bias form:

E
[
−(ν(a)− v)2

]
= −Ev

[
var[ν(a) | v] + (E[ν(a) | v]− v)

2
]

= −Ev [var[ν(a) | v]] = var[ν(a)]− var[E[ν(a) | v]] = ψ2(a)− var[v],

where the second equality follows from E[ν(a) | v] = v, the third equality follows from the law of

total variance, and ψ2(a) = var[ν(a)]. This strictly increases in ψ2(a), hence any single-player sample

maximizes ψ2(a).

Decomposed another way, the player’s expected payoff also equals E[−ν(a)2]+2E[ν(a)v]−E[v2] =
−ψ2(a)− var[v] + 2cov[ν(a), v]. Hence, it must be that cov[ν(a), v] = ψ2(a). Therefore,

ψ2(a) = cov

 n∑
j=1

τj(a)f(aj),

∫
A
ω(a)f(a) da

 =

n∑
j=1

τj(a)cov

[
f(aj),

∫
A
ω(a)f(a) da

]

=

n∑
j=1

τj(a)

(∫
A
ω(a)cov[f(aj), f(a)] da

)
=

n∑
j=1

τj(a)

(∫
A
ω(a)σ(aj , a) da

)
which gives equation (10). On the other hand, posterior variance is alternatively equal to ψ2(a) =

cov
[∑n

j=1 τj(a)f(aj),
∑n

i=1 τi(a)f(ai)
]

=
∑n

i=1

∑n
j=1 τi(a)τj(a)σ(ai, aj), therefore equalizing the

two expressions for ψ2(a), we obtain τj(a)+
∑

i ̸=j τi(a)σ(ai, aj) = τ(aj). The expression for ψ2(a) is

independent of µ, and hence ν0. Hence, the set of single-player samples does not depend on (µ, ν0).

Proof of Proposition 1. Suppose as−1 = {as2, . . . , ask} has been discovered with realizations f(as−1) and

posterior value ν(as−1). By Lemma 2, if σ satisfies NAP then f is Markov. Therefore, the distribution
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of f(a1) given f(a
s
−1) depends only on f(a2). The difference in the posterior values generated from

the samples with and without a1 is ν(a) − ν(as−1) = τ1(a)f(a1) +
(
τ2(a)− τ1(a

s
−1)
)
f(a2). The

difference τ2(a)− τ1(a
s
−1) in the sample weight of as2 across the two samples equals

−
∫ a1

0

σ(a, as2)ω(a) da−
∫ as

2

a1

σ(a, as2)
σ2(a1, a)− σ2(a1, a

s
2)

1− σ2(a1, as2)
ω(a) da = −σ(a1, as2)τ1(a),

where the second equality uses the fact that for a < a1, σ(a, a
s
2) = σ(a1, a

s
2)σ(a, a1) and for a ∈

(a1, a
s
2), σ(a, a

s
2)σ(a, a1) = σ(a1, a

s
2). Therefore,

ν(a)− ν(as−1) = τ1(a) (f(a1)− σ(a1, a2)f(a2)) .

The difference f(a1) − σ(a1, a2)f(a2) is uncorrelated with f(a2). Therefore, f(a1) − σ(a1, a2)f(a2)

is also uncorrelated with ν(as−1), which implies that cov(ν(a), ν(as−1) = ψ2(as−1). Hence,

ψ2(a)− ψ2(as−1) = var(ν(a)− ν(as−1) = τ21 (a)
(
1− σ2(a1, a2)

)
,

which is what as1 maximizes. By the same argument,

ψ2
(
as−k ∪ {ak}

)
− ψ2(as−k) = τ2k

(
as−k ∪ {ak}

) (
1− σ2(ask−1, ak)

)
.

Consider now a′ := as−j ∪ {aj} for an interior j = 2, . . . , k − 1. Using NAP, the difference in the

sample weights assigned to asj−1 and asj+1 due to the presence of aj in the sample is

τj−1(a
′)− τj−1(a

s
−j) =

∫ aj

as
j−1

σ(a, asj−1)
1− σ2(a, aj)

1− σ2(aj , asj−1)
ω(a) da

−
∫ as

j+1

as
j−1

σ(a, asj−1)
1− σ2(a, asj+1)

1− σ2(asj−1, a
s
j+1)

ω(a) da

= −σ(aj , asj−1)
1− σ2(aj , a

s
j+1)

1− σ2(asj−1, a
s
j+1)

(∫ aj

as
j−1

σ(a, aj)
1− σ2(a, asj−1)

1− σ2(aj , asj−1)
ω(a) da

)

:= −σ(aj , asj−1)
1− σ2(aj , a

s
j+1)

1− σ2(asj−1, a
s
j+1)

τ lj(a)

and by similar reasoning

τj+1(a
′)− τj(a

s
−j) = −σ(aj , asj+1)

1− σ2(asj−1, aj)

1− σ2(asj−1, a
s
j+1)

(∫ as
j+1

aj

σ(a, aj)
1− σ2(aj , a

s
j+1)

1− σ2(aj , asj+1)
ω(a) da

)

:= −σ(aj , asj+1)
1− σ2(asj−1, aj)

1− σ2(asj−1, a
s
j+1)

τ rj (a).

The difference in posterior values is, therefore,

ν(a)− ν(as−j) = τj(a)f(aj) +
(
τj−1(a

′)− τj−1(a
s
−j)
)
f(aj−1) +

(
τj+1(a

′)− τj(a
s
−j)
)
f(aj+1)

= τ lj(a)

(
f(aj)− σ(aj , a

s
j−1)

1− σ2(aj , a
s
j+1)

1− σ2(asj−1, a
s
j+1)

f(asj−1)

)

+ τ rj (a)

(
f(aj)− σ(aj , a

s
j+1)

1− σ2(asj−1, aj)

1− σ2(asj−1, a
s
j+1)

f(asj+1)

)
.
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The difference f(aj)− σ(aj , a
s
j−1)

1−σ2(aj ,a
s
j+1)

1−σ2(as
j−1,a

s
j+1)

f(asj−1) is uncorrelated with f(asj−1) but correlated

with f(asj+1). The difference f(aj)− σ(aj , a
s
j+1)

1−σ2(as
j−1,aj)

1−σ2(as
j−1,a

s
j+1)

f(asj+1) is uncorrelated with f(asj+1)

but correlated with f(asj−1). By a similar argument to the one above, the difference in posterior

variances simplifies to

ψ2(a)− ψ2(as−j) = (τ lj(a) + τ rj (a))
2
(1− σ2(asj−1, aj))(1− σ2(aj , a

s
j+1))

1− σ2(asj−1, a
s
j+1)

.

Proof of Proposition 2. Let a and ā be, respectively, the minimum and the maximum attribute in

supp(ω). Because supp(ω) is compact, it is either a single interval [a, ā] or a union of (potentially

degenerate) intervals [a, ā] \
⋃

n In, where {In} is a family of countably many disjoint open intervals

of the form (an, ān), ordered from left to right. Then, a < a1 and sup(
⋃

n In) < ā.

Case I: a1 < a or ak > ā. Let as = {a1, a2, . . . , ak}. We first observe that there is at most one

sample attribute to the left of a: if aj < a for j > 1, then τk(a
s) = 0 for any k ≤ j − 1. Similarly,

ak−1 ≤ ā. By way of contradiction, suppose a1 < a. By Proposition 1, a1 maximizes

τ21 (a
s)
(
1− σ2(a1, a2)

)
=

(∫ a2

a

σ(a, a1)
(
1− σ2(a, a2)

)
ω(a) da

)2

/(1− σ2(a1, a2))

=
σ2(a1, a)

1− σ2(a1, a)σ2(a, a2)

(∫ a2

a

σ(a, a)
(
1− σ2(a, a2)

)
ω(a) da

)2

=:
σ2(a1, a)

1− σ2(a1, a)σ2(a, a2)
C2

0 ,

where C0 does not depend on a1. But the RHS is strictly increasing in σ2(a1, a), which contradicts

the optimality of a1. The player is better off sampling a1 = a instead. By a similar argument, ak ≤ ā

as well.

Case II: a1 ∈ In or ak ∈ In for some n. Without loss, consider a1 ∈ In = (an, ān). Suppose first

that a1 < ān < a2, so a1 is the only sample attribute in the interval In. Then,

τ21 (a
s)
(
1− σ2(a1, a2)

)
=

(∫ an

a

σ(a, a1)ω(a) da+

∫ a2

ān

σ(a, a1)
1− σ2(a, a2)

1− σ2(a1, a2)
ω(a) da

)2 (
1− σ2(a1, a2)

)
:=

(
σ(an, a1)C1 +

σ(a1, ān)

1− σ2(a1, ān)σ2(ān, a2)
C2

)2 (
1− σ2(a1, a2)

)
= σ2(an, a1)C

2
1 +

σ2(a1, ān)

1− σ2(a1, ān)σ2(ān, a2)
C2

2 − σ2(an, a2)C
2
1 + 2C1C2σ(an, ān)

:=
σ2(an, ān)

σ2(a1, ān)
C2

1 +
σ2(a1, ān)

1− σ2(a1, ān)σ2(ān, a2)
C2

2 + C3,

where C1, C2, C3 do not depend on a1. This can be rewritten in terms of x := σ2(a1, ān) as

f(x) =
σ2(an, ān)

x
C2

1 +
x

1− xσ2(ān, a2)
C2

2 + C3,
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the second derivative of which with respect to x is

∂2f(x)

∂x2
= 2

(
C2

1σ
2(an, ān)

x3
+

C2
2σ

2(ān, a2)

(1− xσ2(ān, a2))3

)
> 0.

That is, given as \ {a1}, the marginal value of sampling a1 is convex in σ2(a1, ān) ∈ [σ2(an, ān), 1].

The player is better off sampling either a1 = an or a1 = ān instead. A similar argument applies to

ak ∈ In for some n.

Next, suppose that a1, a2 ∈ In for some n. It is immediate that no more than two sample

attributes can be in any In. Then,

τ21 (a
s)
(
1− σ2(a1, a2)

)
=

(∫ an

a

σ(a, a1)ω(a) da

)2 (
1− σ2(a1, a2)

)
:= σ2(an, a1)C

2
4 + σ2(an, a2)C

2
4

where C4 does not depend on a1. It is immediate that this is increasing in σ2(an, a1) so the player

is better off sampling a1 = an.

Following a similar argument, Proposition 1 implies that a2 maximizes

τ22 (a
s)

(
1− σ2(a1, a2)

) (
1− σ2(a2, a3)

)
(1− σ2(a1, a3))

=

(∫ a3

ān

σ(a, a2)
1− σ2(a, a3)

1− σ2(a2, a3)
ω(a) da

)2 (
1− σ2(a1, a2)

) (
1− σ2(a2, a3)

)
(1− σ2(a1, a3))

=

(
σ(a2, ān)

1− σ2(a2, a3)
C5

)2 (1− σ2(a1, a2)
) (

1− σ2(a2, a3)
)

(1− σ2(a1, a3))

=
σ2(a2, ān)

(
1− σ2(a1, a2)

)
1− σ2(a2, a3)

C2
5

1− σ2(a1, a3)

=
σ2(a2, ān)− σ2(a1, ān)

1− σ2(a2, ān)σ2(ān, a3)

C2
5

1− σ2(a1, a3)

But note that the first term is strictly increasing in σ2(a2, ān), which contradicts the optimality of

any a2 < ān. The player is better off sampling a2 = ān. We have therefore established that it cannot

be that a1 ∈ In or a1, a2 ∈ In for some n.

Case III: aj ∈ In for j = 2, . . . , k−1. To establish that this cannot be the case, we show that either

a2 ∈ In by itself or a2, a3 ∈ In. The impossibility of a1, a2 ∈ In was established in case II.

First suppose that for some n, a2 ∈ In and a1, a3 /∈ In. By a similar argument to the one above,

and letting

C6 :=

∫ an

a1

σ(a, an)(1− σ2(a, a1))ω(a) da, C7 :=

∫ a3

ān

σ(a, ān)(1− σ2(a, a3))ω(a) da,

the objective in Proposition 1 simplifies to(
σ(an, a2)

1− σ2(a1, a2)
C6 +

σ(a2, ān)

1− σ2(a2, a3)
C7

)2 (1− σ2(a1, a2)
) (

1− σ2(a2, a3)
)

1− σ2(a1, a3)

=
σ2(an, a2)

1− σ2(a1, a2)
(1− σ2(a2, a3))

C2
6

1− σ2(a1, a3)
+

σ2(a2, ān)

1− σ2(a2, a3)
(1− σ2(a1, a2))

C2
7

1− σ2(a1, a3)
+

+ 2
σ(an, ān)

1− σ2(a1, a3)
C6C7.
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Letting x := σ2(an, a2) and supressing constants that do not depend on x, this can be expressed as

f(x) = κ0 +
x

1− xσ2(a1, an)

(
1− σ2(an, a3)

x

)
κ1 +

σ2(an, ān)/x

1− σ2(an, a3)/x

(
1− xσ2(a1, an)

)
κ2.

This function is convex in x because

∂2f(x)

∂x2
= 2(1− σ2(a1, a3))

(
σ2(an, ān)κ2

σ2(an, a2)− σ2(an, a3)
+

σ2(a1, an)κ1
1− xσ2(a1, an)

)
> 0.

Therefore, it is maximized at either a2 = an or a2 = ān, which contradicts the optimality of a2 ∈ In.

Finally, suppose a2, a3 ∈ In. By an argument identical to that in Case II, it follows that the

player is better off setting a3 = ān. On the other hand, a2 maximizes(∫ an

a1

σ(a, a2)
1− σ2(a, a1)

1− σ2(a1, a2)
ω(a) da

)2 (
1− σ2(a1, a2)

) (
1− σ2(a2, a3)

)
(1− σ2(a1, a3))

=
σ2(an, a2)

1− σ2(a1, a2)
(1− σ2(a2, a3))

C2
8

1− σ2(a1, a3)

=
σ2(an, a2)

1− σ2(an, a2)σ
2(a1, an)

(
1− σ2(an, a3)

σ2(an, a2)

)
C2

8

1− σ2(a1, a3)
,

which is strictly increasing in σ2(an, a2). Therefore, the player is better off setting a2 = an.

Proof of Theorem 2. Fix a = {a1, . . . , an} ∈ Ak. Given f(a), the principal’s best reply is d∗(f(a)) =

E[vP | f(a)] = νP (a). Therefore, the agent’s payoff VA(a) is

E
[
−(νP (a)− vA)

2
]
= E

[
−νP (a)2

]
+ 2E [νP (a)vA]− E

[
v2A
]

= −
(
ψ2
P (a) + (νP0 )

2
)
+ 2

(
cov[νP (a), vA] + νP0 ν

A
0

)
−
(
var[vA] + (νA0 )

2
)

= −(νP0 − νA0 )2 − ψ2
P (a)− var[vA] + 2cov[νP (a), vA].

If the agent does not sample any attributes, his payoff is

VA(∅) := E
[
−(νP0 − vA)

2
]
= −(νP0 )

2
+ 2νP0 E[vA]− E[v2A]

= −(νP0 )
2
+ 2νP0 ν

A
0 −

(
var[vA] + (νA0 )

2
)

= −(νP0 − νA0 )2 − var[vA],

therefore VA(a) = VA(∅)+2cov[νP (a), vA]−ψ2
P (a). The agent maximizes the added value 2cov[νP (a), vA]−

ψ2
P (a), which is constant in

(
νA0 , ν

P
0

)
. But α2(a) = cov[νP (a), vA] equals

cov

νP0 +

n∑
j=1

τPj (a)(f(aj)− µ(aj)),

∫
A
f(a)ωA(a) da

 =

n∑
j=1

τPj (a)

(∫
A
σ(a, aj)ωA(a) da

)
,

whereas the expression for α1 follows from Theorem 1.

Proof of Proposition 6. Suppose players agree on the relative relevance of attributes. First, it must

be that ωi(a) = 0 ⇔ ω−i(a) = 0. Second, for any relevant attributes a, a′, ωP (a)/ωP (a
′) =

ωA(a)/ωA(a
′). Rearranged, ωP (a)/ωA(a) = ωP (a

′)/ωA(a
′) constant for any a, a′. Hence, it must

be that ωA(a) = ω0 · ωP (a), where ω0 ∈ R a constant, for all a ∈ A.
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(i) Because ωA(a) = ω0 · ωP (a) for all a ∈ A, for any a ∈ Ak,

τAj (a) =

∫
A
τj(a;a)ωA(a) da =

∫
A
τj(a;a)ω0ωP (a) da = ω0τ

P
j (a).

By similar reasoning, τA(aj) = ω0τ
P (aj). This implies that ψ2

A(a) = ω2
0ψ

2
P (a). Hence, the single-

player samples coincide.

(ii) Plugging τA(aj) = ω0τ
P (aj) into (14), we have that α2(a) = ω0ψ

2
P (a). The optimal sample

maximizes 2α2(a) − α1(a) = (2ω0 − 1)ψ2
P (a). If ω0 ⩾ 1/2, then VA(a) − VA(∅) ⩾ 0. The agent’s

objective is maximized at any a∗ = asP = asA. Otherwise, if ω0 < 1/2, then VA(a)−VA(∅) < 0, hence

the empty sample is the unique optimum.

Lemma 4. Fix a sample a = {a1, . . . , an} ∈ Ak and suppose that σ satisfies NAP. The marginal

value VA(a)− VA(a \ {aj}) of any sample attribute aj ∈ a equals
τP1 (a)

(
2τA1 (a)− τP1 (a)

) (
1− σ2(a1, a2)

)
if j = 1

τPj (a)
(
2τAj (a)− τPj (a)

) (1− σ2(aj−1, aj))(1− σ2(aj , aj+1))

1− σ2(aj−1, aj+1)
if 1 < j < n

τPn (a)
(
2τAn (a)− τPn (a)

) (
1− σ2(an−1, an)

)
if j = n.

For any optimal sample a∗ and aj ∈ a∗, τPj (a∗) and τAj (a∗) have the same sign.

Proof of Lemma 4. Suppose σ satisfies NAP, and let a \ {aj} =: a−j for aj ∈ a. First, removing a1
from a∗ only affects the sample weights of a1 and a2. Therefore, α2(a

∗)− α2(a
∗
−1) equals

τP1 (a∗)τA(a1) + τP2 (a∗)τA(a2)− τP1 (a∗−1)τ
A(a2)

= τP1 (a∗)τA(a1)− σ(a1, a2)τ
P
1 (a∗)τA(a2)

= τP1 (a∗)

(∫ a1

0

σ(a, a1)ωA(a) da+

∫ a2

a1

σ(a, a1)
1− σ2(a, a2)

1− σ2(a1, a2)
ωA(a) da

)(
1− σ2(a1, a2)

)
= τP1 (a∗)τA1 (a∗)

(
1− σ2(a1, a2)

)
,

where the first equality substitutes for τP2 (a∗) − τP2 (a∗−1), as in the proof of Proposition 1, and the

second equality uses the fact that for any a > a2 > a1, σ(a, a1) − σ(a1, a2)σ(a, a2) = 0, and for

any a < a1 < a2, σ(a, a2) − σ(a1, a2)σ(a, a1) = 0. Proposition 1 gives that α1(a
∗) − α1(a

∗
−1) =

τP1 (a∗)
2 (

1− σ2(a1, a2)
)
as well. Therefore,

VA(a
∗)− VA(a

∗
−1) = τP1 (a∗)

(
2τA1 (a∗)− τP1 (a∗)

) (
1− σ2(a1, a2)

)
.

The mirror argument is used for the case of VA(a
∗)− VA(a

∗
−n). Similarly, for j = 2, . . . , n− 1,

α2(a
∗)− α2(a

∗
−j) = τPj (a∗)τAj (a∗)

(1− σ2(aj−1, aj))(1− σ2(aj , aj+1))

1− σ2(aj−1, aj+1)
.

Combining this with Proposition 1, we have

VA(a
∗)− VA(a

∗
−j) = τPj (a∗)

(
2τAj (a∗)− τPj (a∗)

) (1− σ2(aj−1, aj))(1− σ2(aj , aj+1))

1− σ2(aj−1, aj+1)
.

Proof of Corollary 2. Immediate from Lemma 4.
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Proof of Proposition 7. Let a := min{aA, aP } and ā := max{āA, āP }. Suppose a∗ = {a1, . . . , an} is

optimal. First, we establish that a1 ⩾ a and an ⩽ ā. Second, we show that if [aA, āA]∩ [aP , āP ] = ∅,
there exists no a ∈ a∗ such that a ∈ (āA, aP ) or a ∈ (āP , aA).

Towards a contradiction, suppose a1 < a. If n = 1, then τ i(a1) = σ(a1, a)τ
i(a) for i = A,P .

Therefore, 0 < α2(a1) = σ(a1, a)
2α2(a) < α2(a), where the first inequality follows from the optimality

of a1 and the last one follows from a1 < a. Similarly, 0 ⩽ α1(a1) = σ(a1, a)
2α1(a) < α1(a). But

2α2(a1) − α1(a1) = σ2(a, a1)(2α2(a) − α1(a)) < 2α2(a) − α1(a). Hence, {a} is strictly preferred to

a∗. If n > 1, Corollary 2 implies that a2 ⩾ a. Then, τA1 (a∗)τP1 (a∗)
(
1− σ2(a1, a2)

)
simplifies to

τA1 (a∗)τP1 (a∗)
(
1− σ2(a1, a2)

)
=

σ2(a1, a)

1− σ2(a1, a)σ2(a, a2)

∏
i=A,P

(∫ a2

a

σ(a, a)
(
1− σ2(a, a2)

)
ωi(a) da

)

:=
σ2(a1, a)

1− σ2(a1, a)σ2(a, a2)
CACP ,

where CA, CP do not depend on a1. Applying Lemma 4, the marginal value of a1 is then

σ2(a1, a)

1− σ2(a1, a)σ2(a, a2)
(2CACP − C2

P ).

If it is optimal to sample at all, it must be that (2CACP − C2
P ) ⩾ 0, hence this marginal value is

increasing in a1. The agent is better off sampling a1 = a instead.

Second, suppose [aA, āA] ∩ [aP , āP ] = ∅ and let āA < aP without loss. By Corollary 2, if there

exists aj ∈ a∗ such that aj ∈ (āA, aP ), then it must be that a1 ∈ (āA, aP ) and n = 1. By NAP,

α2(a1) does not depend on a1 because σ(a1, aP )σ(a1, āA) = σ(āA, aP ), hence

τA(a1)τ
P (a1) = σ(āA, aP )

(∫ āA

aA

ωA(a)σ(a, āA) da

)(∫ āP

aP

ωP (a)σ(a, aP ) da

)
.

By a similar reasoning, α1(a1) = σ2(a1, aP )α1(aP ), which decreases in a1 because σ2(a′1, aP ) =

σ2(a′1, a1)σ
2(a1, aP ) < σ2(a1, aP ) for any a

′
1 < a1 < aP . This contradicts the optimality of a∗.

Proof of Proposition 8. (i) From Proposition 7 for any aj ∈ a∗, aj ∈ [ai, āi] for some i = A,P . By

Corollary 2 and NAP, there can exist at most one attribute a1 ∈ (ai, a−i) such that τ−i
1 (a∗) ̸= 0, for

otherwise player −i would ignore all but the one closest to a−i. Analogously, there exists at most

one attribute in (āi, ā−i).

(ii) Suppose [aA, āA] ∩ [aP , āP ] = ∅. Because all relevant attributes are idiosyncratic, part (i)

implies that |a∗| ≤ 2 for any optimal sample a∗ and k. By contradiction, suppose there exists an

optimal sample a∗ = {a∗1, a∗2} such that a∗1, a
∗
2 ∈ supp(ωi) for some player i. Then, either τ−i

1 (a∗) = 0

or τ−i
2 (a∗) = 0, which violates Corollary 2.

Proof of Proposition 9. Without loss, let aP ⩽ āA and aA ⩽ āP , so that the set of common attributes

has positive measure. If the optimal sample a∗ includes either no common attributes or one common

attribute, then by Proposition 8, either |a∗| ⩽ 2 or |a∗| ⩽ 3 respectively. Suppose the optimal sample

consists of at least two common attributes a∗j < a∗j+1 and |a∗| < k. Consider sampling ã ∈ (aj , aj+1).

The sample weight of such ã in a∗ ∪ {ã} is generically non-zero and it is identical for both players

because ωA(a) = ωP (a) for any a ∈ (aj , aj+1). By Lemma 4, the marginal value of ã is strictly

positive, which contradicts the optimality of a∗. Hence, if a∗ has at least two common attributes,

then |a∗| = k and a∗ contains at least k − 2 common attributes.
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