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C Proofs and auxiliary results for section 3.2

Proof of Proposition 3. For any p € (0,2], op(a,a) and op(a,a) strictly increases in a € [e, a], so
1% (a) increases in a as well. Hence, a = a dominates any a < a. By a similar argument, sampling
a > a is suboptimal as well. So for any p € (0,2], a® € [a, d].

(i) For p = 1, the statement follows from Proposition 2. Consider p < 1. The posterior variance
satisfies the following: (i) lim,, 0¢Y%(a)/0a = —oo, (ii) limgsz OY?(a)/0a = oo, and (iii) ¥? is
differentiable and weakly convex in (a,@). Therefore 1)? is maximized at the endpoints of [a,a]: only
the two relevant attributes are optimal.

(ii) Let p > 1. The sign of 9¢?(a)/da is determined by the sign of the function h(a) := o, (a, a)(a—
a)’~! — o,(a,a)(a — a)P~t. Clearly, ¢? is strictly increasing at a = a because h(a) > 0 and strictly

decreasing at a = a because h(a) < 0. Hence, a® € (a,a). The single-player sample a® satisfies

ha*) = 0, ie., .,
(as —a)p _ op(@’,a) (1)

a—as opla,a®)’

*Department of Economics, New York University. Email: arjada.bardhi@nyu.edu.


arjada.bardhi@nyu.edu

The function h has either a unique zero at (a + @)/2, or three zeros, of which one is (a 4+ @)/2 and

the other two are symmetric with respect to it. There exists at most one a® < (a + a)/2 because

oh A — 1+p((&}a3)p_1) ~ 1+p((aslf—g)p_1)

— =o,(a®,a
p ’ 45 s _
0a|,_,s a as —a

has the same sign over (a, (a+a)/2). Hence, h is either globally decreasing or decreasing-increasing-
decreasing over (a,a).

As £ — 0, the RHS of (1) goes to zero for any a® € (a,a), hence two single-player samples
converge to a® | a and a® 1 a respectively. At any a® such that h(a®) = 0 and o® < (a + a)/2 (i.e.,
for which A crosses zero thrice), the function h is decreasing at a®. Note that h is increasing in ¢ at

such an a® because

Oh p s v~ sp1[[G—a p_ a®—a\’
5| = o aa ) ((%5) —4)) >0

Moreover, the function h is decreasing in a at a = a® such that h(a®) = 0 and a® < (a+a)/2. Thus,

as ¢ increases the single-player sample to the left of (a + @)/2 shifts to the right. By the mirror
argument, the single-player sample that is strictly closer to a shifts to the left as ¢ increases.

For ¢ sufficiently large, the function h is strictly decreasing at (a + @)/2. To see this, consider

) _ P
oh =25 (g — a)p~2e2 ()" <p ((a — a) - 2”) + 2p>
0 |o=ata)/2 ¢

which is strictly negative for ¢ large because ((a — a)/¢)? — 0 as £ — 4o00. Therefore, it must be

that h is strictly decreasing over (g, a), hence the single-player sample is a® = (a + a)/2.
Finally, fix £ > 0. As p | 1, the RHS of (1) converges to a strictly positive value whereas the
LHS shrinks to 0 for any fixed sample. Therefore, the two single-player samples converge to a® | a

and a® T a respectively. O]

Lemma C.1. Suppose Assumption 2 holds. Fiz a sample a = {a1,...,ar}, where 0 < a; < ... <
ar, < 1. For the singleton sample a = {a1}, 7(a1) = ¢ (2 —emm/t _ 67(17a1)/z). For k > 2, the

sample realization f(a;) is weighted by

¢ 1—e—a1/4+tanh(a22_€a1 ) ifi=1
a; — aj—1 aj+1 — a o
Ti(a) =144 tanh(JQ/)—f—tanh J%j)) ifj=2,....,k—1
01— e (=a)/¢ 4 tanh (‘”;;’“)) if j = k.

Proof of Lemma C.1. Using the expressions for 7(a;a) derived in the proof of Lemma 2, we obtain:

(i) if @ < ay, then 1i(a;a) = e~ (1~9/¢ and 7j(a;a) = 0 for all j # 1; (i) if @ > ag, then



me(a;a) = ela=al/t and 7;(a;a) = 0 for all j # k; (iii) if @ € (a;,a;41) for i =1,...,k — 1, then

7(&70@)/[ _ 7(2(11'4,17(17;70,)/[ . — . . —
e e Qiy1 — Qi \ . ai+1 — a
mi(e8) = ——— ey = och (2) sinh <£> !

—(ait1—a)/l _ ,—(aiy1+a—2a;)/L . .
e (& Ai41 a; . a a;
Tit1(a;a) = p=Tr—T, = csch (€> sinh ( 7 ) ,

and 7j(a;a) = 0 for all j # 4,7 + 1. Integrating these weights as in the Corollary 1, we obtain the

sample weights stated in the Lemma. O

Proof of Proposition 4. We first establish that aj > 0 and aj < 1. Suppose, by contradiction, that
aj = 0. Differentiating 12 (a) with respect to the leftmost attribute:

=2/ (1 — sech? (%>) >0

2 —
aw (a) — 266_2041/[ (260,1/[ _ 1) _ 2£Sech2 (a2 al) 2£

aal 20

a1:0 a1:0

for any a \ {a1}. This contradicts the optimality of aj = 0; hence, a§ > 0. By a similar argument,
aj < 1. Therefore, the first-order approach is valid for all sample attributes.
Second, we show that for any j € {2,...,k}, the distance aj —aj_; is constant in j. By the

optimality of af, the first-order condition with respect to af is

09 (a) =2/ <sech2 (aj — aj.l) — sech? (G;H _ a‘;)) =
da; 20 20

212
and the second order condition 83?13(221) < 0 is satisfied. Hence, aj —aj_; = aj;; —aj = (1 —aj —
i

: J J
ay)/(k—1) for any j =2,...,k — 1. By Lemma C.1, this implies that for any j =2,...,k — 1, the

sample weight is 7;(a®) = 2¢tanh (%) . Third, the first-order conditions with respect to af
and aj are respectively

s s 1 - $ - H
efal/z (2 _ ef‘ll/z) = Sech2 (2:];_%0)

¢ )
s s 1—qas s
o—(1—aj) /¢ (2 _ e—(l—ak)M) ~ och? (%(akl_c)zk>

Because the RHSs are equal, LHSs must be equal too. The LHS is of the form x(2 — x), which
strictly increases in x € (0,1). Hence af = 1 — aj, which implies 71 (a®) = 74 (a®). This, along with
as,...,aj_,; being equidistant, establishes part (i).

The FOC for the leftmost attribute af pins down the entire a®. We use the trigonometric identity
sech?(x) = 1—tanh?(z) = (1—tanh(z))(1+tanh(z)) and let 2 := e~ /¢ and y := 1—tanh (%)
to rewrite the FOC with respect to aj as (2 — x) = y(2 — y), where z,y € [0,1]. Because f(z) =

z(2 — z) is one-to-one for z € [0,1], this implies that = y, which, combined with the fact that
1—2a7
500h—1)
solution because for af € (0,1/2), the LHS is strictly increasing in af and it is zero for af = 0,

ai = 1—aj, gives the conditions in part (ii). The equation 1 — e~ %/t = tanh ( ) has a unique



whereas RHS is strictly decreasing in af and it is zero for af = 1/2. Finally, invoking (11), note
that

s 1—2aj 1 —2aj
) — s) — 1 —aj/l h 1 -9 h 1 (S
71(a®) = 7 (a%) é( —e + tan (2€(k 1)>> {tan <2£(l€ 1)) =7;(a’)

for any j = 2,...,k — 1. This establishes part (iii). O

Proof of Proposition 5. By Proposition 4(i), it is sufficient to establish that |aj — 1/2| strictly in-
creases in £ for k > 1. For k = 1, a® = {1/2} is unique for any ¢ > 0. For k > 1, a < 1/2 by sym-

s
daj

metry of a®. By implicit differentiation of the equation for aj(¢) in (11) with respect to £, 7 < 0 iff
205 (k—1)+(2a5 —1)(2—e~ /%) < 0. But a§ < 1/(k+1) because 1—e~%/* —tanh (2;(_,023)) is strictly

increasing in @y and strictly positive for a; = 1/(k+1). Hence, af < 1/(k+1) < (1 —2af)/(k —1),
which implies

aj 1—2af

— T e 9aS(k—1) < 1—2a5 < (1—2a%)(2— e i/t
7 <2£(k—1)® aj(k—1) < a3 < ( ai)(2—e )

because 2 — e~ /¢ > 1. Therefore a is strictly decreasing in /.

Next, we want to show that as £ — 0, a§ — 1/(k+1). Substituting the identity (1+tanh(z))/(1—
tanh(z)) = €2* into equation (11), we obtain 2 — e~ @1/¢ — e% = 0. Because from part (i)
ai < 1/(k+1), as £ — 0 we have e=%/¢ — 0. Therefore, as £ — 0, it must be that e% — 2.
The term ¢(k — 1) — 0 as £ — 0 and (1 —aj(k +1))/(¢(k — 1)) — In(2), hence it must be that
1—af(k+1)— 0 as well.

Finally, we want to show that as £ — +o0, af — 1/(2k). Equation (11) implies

1— —aj/l
—+4o00 —40a;
tanh (Zé(k—i))

Because the numerator and the denominator converge to zero as ¢ — 400, we apply L’Hopital’s

. 2l emaist . 248 (k—1 —af /e s
rule: limg— o0 ——57 £ ey = iMoo all_(2as ) < 11*2‘1? =1.Asl — +oo0, e/l 1
QZZ(k,l)SCCh (22(1971)) 1  sech <2€(k71)>
2 [ 1-2a3 : 245 (k—1) o ,
and sech (M) — 1. Hence, limy_ ;0 1172% = 1. This implies that af — 1/(2k) as
¢ — 4o0. O

Calculations for Remark 1. Let v ~ A (v, 03), where 62 > 0 exogenous. The player has access
to signals f(a) = v+ &(a) where the noise terms are correlated according to the Ornstein-Uhlenbeck
covariance (with variance 1 and correlation exp(—|as —aq]/¢)). Hence, any two signals (f(a1), f(az))
are correlated according to the Ornstein-Uhlenbeck covariance as well: their variance is o + 1 and

their covariance is 02 + exp(—|az — a1]/f) = 03 + 0ou(a1,az). The covariance between v and any



f(a) is 03. Let d; = aj+1 — aj. The sample weights for a = {ay,...,a;} are

-1

o +1 0 fe b/t oo 0 e lditddi)/t
03 4+ e/t ol +1 R N G D
2
(o8 - o)
02 4 e~ (ditotdin)/0 G2 4 o—(datotdi)/E o2+ 1

From here we calculate the posterior variance as

Ww:Zfﬁmm&Nﬁﬂwwwq

j=1m=1

For k = 2, the posterior variance simplifies to

2
4

which is strictly increasing in d;. The optimal signals that maximize this posterior variance subject
to dy € [0,1] are aj = {0, 1}. Similarly, it is straightforward to verify that the optimal signals are
aj = {0,1/2,1} for k = 3, aj = {0,1/3,2/3,1} for k = 4, and so on. The player seeks to sample
signals that are as weakly correlated as possible, so that the overlap between the information that
they carry about v is as small as possible.

The following lemma establishes that the player’s expected payoff is single-peaked in attribute
correlation in a simple attribute setting that is close to the common-variance-common-correlation
signal setting in Clemen and Winkler (1985). Suppose that the attribute space is finite: A =
{a1,...,an}. The player’s value is Z;\Ll f(a;). The common variance is o(a,a) = 1 and the

common correlation is o(a,a’) = p € (—=1/(N —1),1) for any a,d’ € A.

Lemma C.2. For any sample a that consists of k attributes, the expected loss varlv] — ?(a) is

single-peaked in p with a mazimum at p* > 0 such that (1 — p*)? — kp** = k/(N — 1).

Proof of Lemma C.2. We calculate var[v] and 1?(a) for the sample of k attributes a = {a1, ..., ax}.

This is without loss since attributes are identically distributed:

var[v] = Nvar[f(a1)] + 2<N

) JeoslF(an). flea)] = N + N - 1y

k 2 2
_ ) A S T _ Sy —_r
V*(a) = var g;fhh) <1+(A7 k)1+(k——Up) = (kth(k np)<1+(A7 k)1+(k——Up) '

The expected payoff from sample a is

A-pN —F)(N-1)p+1)

Via) (k—1p+1

¥ (a) — varl] = —



V is increasing in p if and only if (1 — p)? — kp? < k/(N — 1). It is immediate to check that
V' is strictly decreasing at any p € (—ﬁ,()] Moreover V is strictly increasing at p = 1. For
p > 0, the term (1 — p)? — kp? is strictly decreasing in p. Therefore, there exists a unique p* at
which (1 — p*)? — kp*? = ﬁ: the payof is strictly decreasing (resp., increasing) for p < p* (resp.,
p > p*). Hence the expected loss is single-peaked with a peak at p*. O

D Proofs and auxiliary results for section 4.2

Proof of Proposition 10. Without loss, suppose ay < ap. Given a sample a = {a}, the sample
weight for player i is 7¢(a) := 7{(a) = 0,(a,a;). We first establish that a* > a4 for any p € (0,2].
To the contrary, suppose a* < as. Then as a increases in (a*,a4), both 77 (a) and 74 (a) increase.

The agent’s payoff strictly increases because

OVy(a) ord(a) 0tF(a) ot (a)
ga :2Tp(a)< da  da )+2TA(Q) da

This is strictly positive for a < a® since for both players, 7° > 0, 7(a)/8a > 0, and 97°(a)/da

decreases in a;. The agent is strictly better off sampling a4 instead. Next, we establish that a* ¢
((aa+ap)/2,ap) for any p € (0,2]. The agent’s payoff is strictly decreasing in a € ((aa+ap)/2,ap)
because 974 (a)/0a < 0, 07 (a)/0a < 0 and 0 < 74(a) < 7F(a). The agent is better off sampling
(ap + a4)/2 instead. Third, we establish that a* < ap for any p € (0,2]. Suppose, to the contrary,
that a* > ap. Consider an alternative sample a = ap — (a* — ap). If available, i.e., if a € A,
(@) = 7F(a*) but 74(a) > 74(a*), hence Va(a) > Va(a*). If @ ¢ A, it must be that a < aa.
But by the argument above, the agent strictly prefers a4 to any such @ < a4. This contradicts the
optimality of a*. Hence, these three observations imply that a* € [a 4, (ap+aa)/2] for any p € (0, 2].

(i) Let p € (0,1]. For any a € [aa, (ap +aa)/2] and any p € (0,2], the agent’s payoff V4 (a) is

strictly decreasing in « if and only if

a—az e(%)" _ e(%)" ’

which holds because 0 < a — a4 < ap — a. Therefore, the agent prefers sampling a4 to sampling

any a € [aa, (ap +aa)/2].
(ii) Let p € (1,2]. At a = a4, the agent’s payoff is increasing because the LHS of the inequality

in part (i) is zero. Moreover, the first-order condition that pins down the optimal sample a* €
(aa,(ap+aa)/2) is
ap—a*\P
6( Pe ) <ap—a*>p1
e(aPza*)T’ie(a*;aA)p Cl*—CLA ‘

As £ — 0, the LHS approaches 1. Therefore it must be that RHS approaches 1 as well, which implies




that a* approaches (ap +a4)/2. Alternatively, as £ — +o00, the LHS approaches +o0, which implies
that a* — a4 so that the RHS approaches +o00 as well.
Moreover, as p — 1, the RHS of the FOC converges to 1, whereas the LHS converges to

ap—a*

(& [
ap—a* a*—az

e ¢ — €

> 1.

In order for the FOC to hold, it must be that LHS also converges to 1, which implies that a* —
aa. O

Proposition D.1. If o satisfies NAP, no sampling is optimal if and only if for any a € A,
P(a)/74(a) > 2.

Proof. Fix k. If no sampling is strictly optimal, then in particular V4({a1}) < 0 for any singleton
sample in A;, which is equivalent to 274 (a1)—7 (a1) < 0. Conversely, suppose A 4 /Ap is sufficiently
close to zero. If sample a* = {aq,...,a,} is optimal, by the previous argument all samples of size 1
must attain strictly negative payoff, hence n > 2. In particular, 74(a;) < 77(a;)/2 for all a; € a*.

But then,

n P *
* P/ x* T (G’J) _ al(a )
ax(a’) <} 7/ (@) 5" = =5
J=1
hence V4 (a*) < 0 as well. This contradicts the optimality of a*. O

Proof of Proposition 11. (i) Without loss, let a4 < ap. Suppose a* = {a1, a2} where a1 € [a,,a4]
and az € [ap,ap|. We show that Vi({a1,a2}) < Va({a1,ap}) < Va({aa}). Consider first the
difference as({a1,a2}) — a2({a1}), which due to NAP equals

aa

o) (@0) (1= oyl aa)) = [

Goularap)(1 — 0%, (a, 1)) da) P (%) (ap a2).

The term 74 (a*)o,u(ap,az) strictly decreases over as € [ap,ap| because its first derivative with

respect to ay is —2e~(4172p)/Ccsch?((ay — ag)/f) sinh((az — ap)/(2€)) sinh((az + ap — 2a1)/(20)) < 0
for az > ap. Hence, az({a1,ap}) > az({a1,as}) for any as > ap. On the other hand, ¥%({a1,az})
is single-peaked in ag € [ap,ap] with the peak at aa > (ap + ap)/2, because in the absence of aq,
12 would be maximized at (ap + ap)/2. Moreover, for any az > a2, ¥%({a1,a2}) > % ({a, as —
(a2 — as)}). Hence, for any as € (ap,ap), ¥5({a1,a2}) > ¢¥%({a1,ap}). Therefore, ay = ap guar-
antees higher covariance and lower 1%, which implies V4 ({a1,a2}) < Va({a1,ap}) = Va({ap}) for
any as > ap, where the last equality follows from 7{({a1,ap}) = 0. Now consider the alterna-
tive sample {@}. Note that ¢3({a4}) = 02 (ap,a4)0b({ap}) < 63({ap}) and 7P (aa)rA(aa) =
(vou(@a, ap)¥(ap)) (1*(ap)/oou(@n, ap)) = 7 (ap)7*(ap). Hence, Va({ap}) < Va({aa}). There-
fore, {4} dominates a*. Moreover, any sample of the form {as} for as € [ap,ap] is dominated by

{@a}. Hence the optimal sample is of the form {a;}, where a; € [ay,a4]. Differentiating V4 ({a1})



with respect to a1,

av, aj—ap—2(aptap) [ a a a

A(al) _ 266% <€TP _ eTP) (6701 4 OO)
8a1

where C) = e/t (e2r/t — ear/t) — 2e(ertar)/t < 0 and Cy = 2e(@atertar)/t > . Therefore, the

FOC that uniquely pins down a}, whenever the solution is interior in [a ,a4], is e*1/¢ = —Cy/C}.

The second order condition is satisfied as well because

ap ap
2

- eT> (e“elcl + CO/2> <0.

0?Va(ar) g limtaz2erter) (e

= e
2
Oas .

a1:a1

It can be easily verified that V4({Ga}) < 0. Moreover if e2a/tCy 4+ Cy > 0 then Va{as}) > 0.
Therefore, either Va({as}) > 0 > Va({aa}) and V4 is single-peaked in aj, or Va({as}) < 0
and Vy is strictly decreasing in a;. The optimal attribute, if interior, is given by a} = ap —
(In (% (2e(@r—aa)/t 4 el@r=ap)/t _ 1)) which simplifies to aj = —(In (e"—’A/f + M)
The case of ap < a4 follows by a similar argument.

(i) Let ap < ay. Equation (15) simplifies to e%1/¢ — e2a/¢ = 1 (ear/¢ — car/t) By implicit differ-

entiation with respect to ¢, we obtain

9ai(0) _ _arje (91 arje QA a0 QP apje | 9P a0
o ¢ O T T e )

The function g(z) := ze® is above f(z) := e® for z > 1, below f(z) for x < 1, and strictly more
convex than f(z). Hence, if e®1/¢—e2a/t —1 (e3r/f — e2r/f) = then %eai/z —faeea/t_dpear/ty
%—;’eﬁP/ £ > 0. Therefore, a}(¢) is strictly increasing in £. An analogous argument applies to the case
of a4 < ap.
iii) We take the limit of a¥(¢) in (15) as £ — 0". Let ap < a,. Applying L’Hopital’s rule and then
1 A

dividing through by e%4/*, we obtain
2QA69A/Z+ELP€6'P/Z —QPBEP/Z . QQA+ELP€_(2A_5'P)/£ _Qpe_(QA_EP)/Z

[1—1>I(I)1+ a1 (6) - él—1>r(r)l+ 2€QA/€ —+ eaP/Z —_ eQP/Z - él_l>r(I)1+ 2 —+ e_(QA_aP)/é — e_(QA_QP)/Z

which is just 2a,/2 = a,. By a similar argument, if a4 < ap then aj(¢) — a4 as £ — 07.

(iv) Let ap < a4. By similar steps to part (iii),

2@14—‘,—dpe_(QA_aP)/é—gpe_(gA_gP)/e 2QA+6’P_QP n AP
— =ay, -

lim a(¢) = lim 5

£—+o0 £—+o00 24 e~ (@a—ar)/l _ g—(ay—ap)/t B 2

If Ay > Ap/2, this limit is interior in [a 4, a4]. Otherwise, a* is empty. A similar argument applies

to the case of a4 < ap. O

Proof of Proposition 12. Without loss, fix 0 < a4 < ap < ag < ap < 1 and let an optimal sample

be a* = {a1,...,a,}. We first show that there is no sampling in (a@4,ap]. Suppose first that



n =1and a; € (@a,ap]. Then, as(a1) = 0ou(@a,a1)74(@4)7" (a1) and its first derivative with
respect to ay is —274(aa)exp((@a — 2a;)/¢)(exp(ai/f) — exp(ap/f)) < 0. Hence, ay is strictly
decreasing over (@a,ap]. Let a% := (ap +ap)/2. If a1 € (aa,a%], a1 is strictly increasing, hence
Va(ay) is strictly decreasing. If a1 € (a%,ap], then due to ¢% being single-peaked at a3 and
symmetric around it, 77(a1) = 77 (a% — (a1 — a$)) and ai(a;) = aq(ap — (a1 — a%)). Hence,
Va(ar1) < Va(a3 — (a1 — a%)). Next suppose n > 2 and a,, > a4. Consider first the difference

az(a*) —ag(a* \ {a,}) = T,‘:‘(a*)ff(a*)(l — 02, (an—1,ay)), which equals

Gou(@n, an)rF (%) (/A o, da)(1 — agu(a,an_l))da> .

n—1

The term 04, (@a,a,)7. (a*) is strictly decreasing in a,, because its first derivative with respect to
an is —2exp((aa — an_1)/0)csch®((an_1 — a,)/0) sinh((a, — ap) /L) sinh((a, + ap — 2a,_1)/f) < 0
if a,_1 < ap and —2exp((a, + a@a)/l)/(exp(an—1/¢) + exp(an/€))* < 0 if a,—1 > ap. Therefore,
ag(a*) is strictly decreasing in a,, € (@4, ap]. On the other hand, from the single-player benchmark
we know that 1% (a*) is single-peaked in a,, € (a,—1,ap], with a peak at a$ > (ap+ap)/2 because in

the absence of the rest of the sample, and in particular a,_1, it would be maximized at (ap +ap)/2.

S

If af > aa, then any attribute in (aa,a?

) is dominated by @s. Moreover V4 is either single-

s
ns

troughed in a,, with a trough to the right of a
Va((@ \{an}) Uaa) > Va((@™ \ {an}) Uaa).

Second, to show that there is no sampling in [a,,ap) for n > 2, we suppose by contradiction

or strictly decreasing in a,, € (@a,ap]|. Hence,

that a1 < ap. For Tlp(a*) # 0, it must be that ay > ap. Differentiate V4 with respect to a1, we

obtain

ap — az 1 az —ap o (A1 — G2 .12 (a2 —ap
4€<2cosh< 7 ) 1 cosh(g ))csch( 7 )smh (% >>O

for any a1 < ap < az because as —a; > a2 —ap. Hence, V4 strictly increases in a;. Finally, n =k
by Corollary 9. O

E Extensions and additional results

E.1 Examples for section 5.1

Example E.1 (Inference reversal due to conflicting attributes). Let A = [a,a] and w(a) = 1 for
all a € A. The attribute covariance is oyn(a,a’) = (a — a)(a’ — a) and the prior mean is p(a) = 0
for a,a’ € A; note that oyn(a,a) = 0. This structure corresponds to a linear attribute mapping f
that goes through the realization f(a) =0 for a € A and the slope of which is not known (Figure 1).
Attribute variance increases quadratically with distance from a. Without loss, let a < (a+a)/2. The

correlation between any two attribute realizations is perfect because



" _ ouin(a, a’) _J+1 if sgn(a—a) = sgn(a’ —
CO’I’T(f(a)’ f(a )) - \/Ulin(aa a/)alin(a/la a/) - 1 Zf sgn(a _ &) 7& sgn(a' B

Q>

)
).

Q>

Therefore, discovering one more attribute resolves all uncertainty about f.

Figure 1: Linear attribute mapping corresponding to oyin

Suppose a # a is discovered. The uncertainty about v prior to the discovery of f(a) is %(d —

a)?(a+a—2a)?. The project is more uncertain the greater is the mass of attributes (a — a) and the
farther a is from the median attribute (a+a)/2, i.e., the more peripheral the known attribute a is. If
a is exactly the median attribute, the uncertainty about v is zero because the uncertainty about [a, @]
cancels that about [a,a). Given a singleton sample a = {a}, by equation (6) the expected realization
of any other attribute a is E[f(a) | f(a)] = 11(a;a)f(a) = (a — a)f(a)/(a—a). Hence, from equation
(8), the sample weight is T1(a) = (@ — a)(a + a — 2a)/(a — a), which is strictly negative for a < a.
That is, a high realization for a < a implies low realizations for attributes in [G,a], which is the

magjority of the attributes. Therefore, the sample weight of attributes to the left of G is negative even

though all attributes are desirable.

Example E.2 (Inference reversal due to the presence of other sample attributes). Let A = [0, 1],
w(a) =1, and the squared-exponential covariance oz(a,a’) = e—(a—a’)?/? foralla,a’ €10,1]. Lemma
E.3 shows the possibility of a reversal in the direction of inference when going from a one-attribute
sample to a two-attribute one. Due to the positive attribute correlation, any singleton sample has
a strictly positive sample weight. But in a two-attribute sample, one of the attributes can have a
strictly negative sample weight, even though the sum of the sample weights for the two attributes
must be strictly positive. Lemma E.3(i1) establishes that such a negative sample weight arises if and
only if the two attributes are on the same side of the median attribute and attribute correlation is

high. The attribute with a negative sample weight is the one farther away from the median attribute.
Lemma E.3. Let 0y(a,a’) = e @/ and w(a) = 1 for all a,d’ € [0,1]. For any sample
a; ={a1}, m(a1) > 0. For any two-attribute sample ag = {ay1,as} such that 0 < a3 < az <1,

(1) the sum of sample weights is always positive: T1(az) + m2(az) > 0;

(i) one of the attributes is assigned a strictly negative if and only if a1 and ag are on the same

side of the median attribute and £ is sufficiently large.
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Proof of Lemma E.3. (i) Let g(a) := erf (%)-+erf (152). First, note that g(a) > 0 because a; € [0, 1],
¢ > 0 and erf(z) > 0 for any = > 0. For a singleton sample, equation (8) simplifies to 7 (a;) =
¢y/mg(a1) > 0. Now consider as = {aj,as}, where a; < ag, and let d := as — a;. Applying Lemma

1, the sample weights are given by

T'(a)—lﬁ\/?rejmzlﬁcsch & (edz/zz (a;) —g(a ))
@)=z 72 gl\a;) — gla—;

which is positive if and only if edz/ZQg(aj) —g(a—;) > 0. Then, the sign of the sum 7 (a) + m»(a) is
determined by the sign of g(a1) + g(az), which is strictly positive for any a1,as € [0,1]. Hence at
least one of the attributes has a strictly positive sample weight.

(ii) Taking the limit of these sample weights as ¢ — +oc0, we obtain

lim 7 (ag) = 2@771, lim 7y(az) = ﬂ.

£—+00 2(ag —a1)’ =t 2(as —ay)
If a; < as < 1/2, then limy_ 1o T1(a2) < 0. If 1/2 < a1 < ag, then limy_, 1o T2(az) < 0. So the
conditions are sufficient. To show that they are also necessary, suppose first a; < 1/2 < ag. Then,
ed2/€2g(a]~) — g(a—;) strictly increases in the distance d for any a; € ap and it is zero for d = 0.
Second, suppose that a1 < as < 1/2. Then, 71(a2) as a function of ¢ is single-troughed in ¢ and
crosses zero only once in /¢, say at £ = £. On the other hand, To(as) as a function of ¢ is decreasing

and strictly positive in £. Hence, for 7 (az) to be strictly negative, it is necessary that £ > /. O

E.2 Binary decision and reservation values

Proposition E.2. Let D = {0,1} and for each i = A, P, u(1,v;) = v; and u(0,v;) = r;, where

r; € R is a known outside option. The agent’s expected payoff from any sample a € A, is

VA<a):w<%4_m)@(”é"’“P)+ (@) ¢()
Vai(a) Vai(a) ar(a)

where ay and oy are as defined in theorem 2.

Proof of proposition E.2. Let p(a) denote the correlation between vp(a) and v4(a), the joint distri-

bution is Gaussian:

(uP(a))N N<<u5’> ( () p(am(awp(a)))_
v/ (a) v') \p@va@r@) V)

Claim 1. For any rp € R,

FA @) | P (@) 2 rp) = — (S5mE) (7 +r @3B0t @ — ) — e
- val@)® (45 vp(a)y/1— pa)?
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Proof. Let x1, x5 be jointly Gaussian with means pi, us, variances o2, 02 and covariance oq2. Let
s y y 2, 1,92

f1, fo and F}, F5 denote their respective pdf and cdf. Then,

oy |z zj):%wf)r@zzf)f@ﬂdfz > )
- 1_1F2(3—E)/:o f(z2 | 21) fr(z1)dzs
_ (@) _
- 20 r@).

The first line multiplies and divides by Pr(zy > Z). The second line rewrites Pr(zy > Z) f(x1 | 22 >
Z) using the joint density and the observation that f(x1,z2) = f(x2 | 1) f1(x1). The last two lines

use the conditional distribution of xs | z1. But,

g
ro |1 ~ N (,u2 +Pﬁ($1 — ), (1= PQ)US)

and p = % Therefore, we can substitute in the expression for Fj,,, to obtain
- Ji(z1) T —p2 = p (@1 — )
T |29 >2F)=——(1-0 S .
e ) 17
Switching back to our variables of interest, let z; = v4(a) ~ N(vg,v%(a)), z2 = v (a) ~
N (@&, v%(a)) and & := rp. Therefore,
VA( )_VA a
o o () rp — g — p(a) 22 (1A () — 1)
fR @l () 2 7p) = ey (0 Gr(@)y/1— pla)
ba(a) (k@(wp(a))) P p
O
Using the claim, observe that:
P A P v —Tp <A A P A
Pr(v"(a) = rp)E[v"(a) | v"(a) 2 rp] = @ “or(@) vi(a)f(v(a)lv’ (a) = rp)dvi(a)
-/ * i), (”A<a> - ) o (PG ) e
—eo Ya(a) Ya(a) Yp(a)y/1 — p(a)?
(oo}

_ 24 (@) + 1A bl v§ + pla)yp(a)r —rp -
—/_DO( baa) +vg') o ><I>< () /T )d :

vA(@-vd

Data) - From Owen (1980), we have the following Gaussian identities

where in the last line z :=
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(respectively, numbered 10,010.8 and 10,011.1 in Owen (1980)):

/_‘: P(z)®(a + bx)dz = ® <\/16—L-7b2> ’ /_Z 2¢(2)®(a + br)dz = \/lib2¢ (\/111)2) _

Letting a := (v’ — rp)/(dp(a) /T — p2(a)) and b= p(a)//T— 2 (a),

uP —rp vl —rp
Pr(v"(a) > rp)Er? (a) | v"(a) > rp] = '@ (ELP@) Tr@a@)e (Zw@)) ‘

Therefore, the agent’s payoff from sample a simplifies to
Vata) = Pr7 @) < e+t (1) 4 ptaatars (60
ala) = P)TA — A —
’ Yp(a) Yp(a)
l/éD —Trp

=ra+ (g —ra)® (%) +p(@)paa)e (1/)13@)) '

P(a),v4] = az(a) because Tf(a)—i—zi;ﬁj i (a)o(a;,a;) =

74(a;). Substituting ¥p(a) = y/a1(a) and p(a)pa(a) = az(a)/y/ai(a) into Va(a), we obtain the

desired expression. O

Finally note that cov[v” (a), v4(a)] = cov[v

E.3 Noisy observations of attribute realizations

Fix a sample a € A, and noisy observations y(a) = f(a) +¢(a), where e(a) ~ N'(u°(a),n*(a)) is the
noise term drawn independently across attributes. Figure 2 illustrates extrapolation across noisy

realizations of a Brownian sample path.

nnnnnnnnnnnnnnnnnnn

Figure 2: Extrapolation across a standard Brownian motion with n = 0 (red) and n = 0.25 (blue). Sample a =
{1/4,1/2,3/4} and A= [0,1]. Also, pu(a) = p°(a) =0 for all a € A.

Corollary E.4. The set of single-player samples does not depend on observational bias p°.
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Proof. Fix a sample a = {aq,...,ar} € Ax. The observations are distributed according to

y(a1) war) + p’(a1) U(‘“;:Z;)Q'Z?) o ZEZ; Zi;
NN ) ’ 5 e b
y(ar) pulax) + p(ax) o(ak,ar) oo olak,ar) +n*(ax)

Let X(n) be this new covariance matrix. Following Lemma 1, 7;(a;a) is now the (1,5)*" entry of
the matrix (g(al, a) ... a(ak,d)) ¥71(n). The posterior variance is as in equation (10), where
7j(a) is derived from 7;(d;a) above as in Lemma 2.1. By the same argument as in Theorem 1(iii),

10 enters neither the posterior variance nor the single-player sample. O

Example E.5 (Noisier observations, more uncertain attributes). Consider the Brownian covariance
opr(a,a’) = min(a,a’) over A =[0,1]. That is, attribute uncertainty increases from left to right and
attribute a = 0 is the least uncertain attribute. Let w(a) = 1 for all a € [0,1] and k = 1. The
observations are of the form y(a) = f(a) + €, where e ~ N'(0,1?). For any sample a € [0,1], the
posterior variance 1?(a) naturally decreases with the amount of noise n?. The optimal sample a*(n)
is pinned down by a*(n) (3a*(n) — 2) —4 (1 —a*(n))n? = 0. It can be easily verified that the optimal

attribute without observational noise is a*(0) = 2/3. By implicit differentiation with respect to 1,
da*(n) _  4n(1—a*(n))

an  3a*(n) +2n% —
The higher n? is, the further away the single-player attribute is from a = 0. That is, in the presence

1> 0 for a* € (2/3,1) and n > 0 and a*(n) is strictly increasing at n = 0.
of greater observational noise, the player samples attributes that are ex ante more uncertain.
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