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C Proofs and auxiliary results for section 3.2

Proof of Proposition 3. For any p ∈ (0, 2], σp(a, a) and σp(a, ā) strictly increases in a ∈ [α, a], so

ψ2(a) increases in a as well. Hence, a = a dominates any a < a. By a similar argument, sampling

a > ā is suboptimal as well. So for any p ∈ (0, 2], as ∈ [a, ā].

(i) For p = 1, the statement follows from Proposition 2. Consider p < 1. The posterior variance

satisfies the following: (i) lima↓a ∂ψ
2(a)/∂a = −∞, (ii) lima↑ā ∂ψ

2(a)/∂a = ∞, and (iii) ψ2 is

differentiable and weakly convex in (a, ā). Therefore ψ2 is maximized at the endpoints of [a, ā]: only

the two relevant attributes are optimal.

(ii) Let p > 1. The sign of ∂ψ2(a)/∂a is determined by the sign of the function h(a) := σp(a, ā)(ā−
a)p−1 − σp(a, a)(a− a)p−1. Clearly, ψ2 is strictly increasing at a = a because h(a) > 0 and strictly

decreasing at a = ā because h(ā) < 0. Hence, as ∈ (a, ā). The single-player sample as satisfies

h(as) = 0, i.e., (
as − a

ā− as

)p−1

=
σp(a

s, ā)

σp(a, as)
. (1)
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The function h has either a unique zero at (a + ā)/2, or three zeros, of which one is (a + ā)/2 and

the other two are symmetric with respect to it. There exists at most one as < (ā+ a)/2 because

∂h

∂a

∣∣∣∣
a=as

= σp(a
s, ā)(ā− as)p−1

1 + p
((

ā−as
ℓ

)p − 1
)

ā− as
−

1 + p
((

as−a
ℓ

)p
− 1
)

as − a


has the same sign over (a, (ā+a)/2). Hence, h is either globally decreasing or decreasing-increasing-

decreasing over (a, ā).

As ℓ → 0, the RHS of (1) goes to zero for any as ∈ (a, ā), hence two single-player samples

converge to as ↓ a and as ↑ ā respectively. At any as such that h(as) = 0 and as < (a + ā)/2 (i.e.,

for which h crosses zero thrice), the function h is decreasing at as. Note that h is increasing in ℓ at

such an as because

∂h

∂ℓ

∣∣∣∣
a=as

=
p

ℓ
σp(a

s, ā)(ā− as)p−1

((
ā− as

ℓ

)p
−
(
as − a

ℓ

)p)
> 0.

Moreover, the function h is decreasing in a at a = as such that h(as) = 0 and as < (a+ ā)/2. Thus,

as ℓ increases the single-player sample to the left of (a + ā)/2 shifts to the right. By the mirror

argument, the single-player sample that is strictly closer to ā shifts to the left as ℓ increases.

For ℓ sufficiently large, the function h is strictly decreasing at (a+ ā)/2. To see this, consider

∂h

∂a

∣∣∣∣
a=(a+ā)/2

= 23−2p(ā− a)p−2e−2−p( ā−a
ℓ )

p
(
p

((
ā− a

ℓ

)p
− 2p

)
+ 2p

)

which is strictly negative for ℓ large because ((ā − a)/ℓ)p → 0 as ℓ → +∞. Therefore, it must be

that h is strictly decreasing over (a, ā), hence the single-player sample is as = (a+ ā)/2.

Finally, fix ℓ > 0. As p ↓ 1, the RHS of (1) converges to a strictly positive value whereas the

LHS shrinks to 0 for any fixed sample. Therefore, the two single-player samples converge to as ↓ a
and as ↑ ā respectively.

Lemma C.1. Suppose Assumption 2 holds. Fix a sample a = {a1, . . . , ak}, where 0 ⩽ a1 < . . . <

ak ⩽ 1. For the singleton sample a = {a1}, τ(a1) = ℓ
(
2− e−a1/ℓ − e−(1−a1)/ℓ

)
. For k ⩾ 2, the

sample realization f(aj) is weighted by

τj(a) =



ℓ

(
1− e−a1/ℓ + tanh

(
a2 − a1

2ℓ

))
if j = 1

ℓ

(
tanh

(
aj − aj−1

2ℓ

)
+ tanh

(
aj+1 − aj

2ℓ

))
if j = 2, . . . , k − 1

ℓ

(
1− e−(1−ak)/ℓ + tanh

(
ak − ak−1

2ℓ

))
if j = k.

Proof of Lemma C.1. Using the expressions for τ(a;a) derived in the proof of Lemma 2, we obtain:

(i) if a < a1, then τ1(a;a) = e−(a1−a)/ℓ and τj(a;a) = 0 for all j ̸= 1; (ii) if a > ak, then
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τk(a;a) = e−|ak−a|/ℓ and τj(a;a) = 0 for all j ̸= k; (iii) if a ∈ (ai, ai+1) for i = 1, . . . , k − 1, then

τi(a;a) =
e−(a−ai)/ℓ − e−(2ai+1−ai−a)/ℓ

1− e−2(ai+1−ai)/ℓ
= csch

(
ai+1 − ai

ℓ

)
sinh

(
ai+1 − a

ℓ

)
,

τi+1(a;a) =
e−(ai+1−a)/ℓ − e−(ai+1+a−2ai)/ℓ

1− e−2(ai+1−ai)/ℓ
= csch

(
ai+1 − ai

ℓ

)
sinh

(
a− ai
ℓ

)
,

and τj(a;a) = 0 for all j ̸= i, i + 1. Integrating these weights as in the Corollary 1, we obtain the

sample weights stated in the Lemma.

Proof of Proposition 4. We first establish that as1 > 0 and ask < 1. Suppose, by contradiction, that

as1 = 0. Differentiating ψ2(a) with respect to the leftmost attribute:

∂ψ2(a)

∂a1

∣∣∣∣
a1=0

= 2ℓe−2a1/ℓ
(
2ea1/ℓ − 1

)
− 2ℓsech2

(
a2 − a1

2ℓ

) ∣∣∣∣
a1=0

= 2ℓ
(
1− sech2

(a2
2ℓ

))
> 0

for any a \ {a1}. This contradicts the optimality of as1 = 0; hence, as1 > 0. By a similar argument,

ask < 1. Therefore, the first-order approach is valid for all sample attributes.

Second, we show that for any j ∈ {2, . . . , k}, the distance asj − asj−1 is constant in j. By the

optimality of asj , the first-order condition with respect to asj is

∂ψ2(a)

∂asj
= 2ℓ

(
sech2

(
asj − asj−1

2ℓ

)
− sech2

(
asj+1 − asj

2ℓ

))
= 0

and the second order condition ∂2ψ2(a)
∂asj

2 < 0 is satisfied. Hence, asj − asj−1 = asj+1 − asj = (1 − as1 −
ask)/(k − 1) for any j = 2, . . . , k − 1. By Lemma C.1, this implies that for any j = 2, . . . , k − 1, the

sample weight is τj(a
s) = 2ℓ tanh

(
1−as1−a

s
k

2ℓ(k−1)

)
. Third, the first-order conditions with respect to as1

and ask are respectively

e−a
s
1/ℓ
(
2− e−a

s
1/ℓ
)
= sech2

(
1− as1 − ask
2ℓ(k − 1)

)
e−(1−ask)/ℓ

(
2− e−(1−ask)/ℓ

)
= sech2

(
1− as1 − ask
2ℓ(k − 1)

)
Because the RHSs are equal, LHSs must be equal too. The LHS is of the form x(2 − x), which

strictly increases in x ∈ (0, 1). Hence as1 = 1− ask, which implies τ1(a
s) = τk(a

s). This, along with

as2, . . . , a
s
k−1 being equidistant, establishes part (i).

The FOC for the leftmost attribute as1 pins down the entire as. We use the trigonometric identity

sech2(x) = 1−tanh2(x) = (1−tanh(x))(1+tanh(x)) and let x := e−a
s
1/ℓ and y := 1−tanh

(
1−as1−a

s
k

2ℓ(k−1)

)
to rewrite the FOC with respect to as1 as x(2 − x) = y(2 − y), where x, y ∈ [0, 1]. Because f(z) =

z(2 − z) is one-to-one for z ∈ [0, 1], this implies that x = y, which, combined with the fact that

as1 = 1−ask, gives the conditions in part (ii). The equation 1−e−as1/ℓ = tanh
(

1−2as1
2ℓ(k−1)

)
has a unique

solution because for as1 ∈ (0, 1/2), the LHS is strictly increasing in as1 and it is zero for as1 = 0,
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whereas RHS is strictly decreasing in as1 and it is zero for as1 = 1/2. Finally, invoking (11), note

that

τ1(a
s) = τk(a

s) = ℓ

(
1− e−a

s
1/ℓ + tanh

(
1− 2as1
2ℓ(k − 1)

))
= 2ℓ tanh

(
1− 2as1
2ℓ(k − 1)

)
= τj(a

s)

for any j = 2, . . . , k − 1. This establishes part (iii).

Proof of Proposition 5. By Proposition 4(i), it is sufficient to establish that |as1 − 1/2| strictly in-

creases in ℓ for k > 1. For k = 1, as = {1/2} is unique for any ℓ > 0. For k > 1, as1 < 1/2 by sym-

metry of as. By implicit differentiation of the equation for as1(ℓ) in (11) with respect to ℓ,
∂as1
∂ℓ < 0 iff

2as1(k−1)+(2as1−1)(2−e−as1/ℓ) < 0. But as1 < 1/(k+1) because 1−e−a1/ℓ−tanh
(

1−2a1
2ℓ(k−1)

)
is strictly

increasing in a1 and strictly positive for a1 = 1/(k + 1). Hence, as1 < 1/(k + 1) < (1− 2as1)/(k − 1),

which implies

as1
ℓ
<

1− 2as1
2ℓ(k − 1)

⇔ 2as1(k − 1) < 1− 2as1 < (1− 2as1)(2− e−a
s
1/ℓ)

because 2− e−a
s
1/ℓ > 1. Therefore as1 is strictly decreasing in ℓ.

Next, we want to show that as ℓ→ 0, as1 → 1/(k+1). Substituting the identity (1+tanh(x))/(1−
tanh(x)) = e2x into equation (11), we obtain 2 − e−a

s
1/ℓ − e

1−as
1(k+1)

ℓ(k−1) = 0. Because from part (i)

as1 < 1/(k + 1), as ℓ → 0 we have e−a
s
1/ℓ → 0. Therefore, as ℓ → 0, it must be that e

1−as
1(k+1)

ℓ(k−1) → 2.

The term ℓ(k − 1) → 0 as ℓ → 0 and (1 − as1(k + 1))/(ℓ(k − 1)) → ln(2), hence it must be that

1− as1(k + 1) → 0 as well.

Finally, we want to show that as ℓ→ +∞, as1 → 1/(2k). Equation (11) implies

lim
ℓ→+∞

1− e−a
s
1/ℓ

tanh
(

1−2as1
2ℓ(k−1)

) = 1.

Because the numerator and the denominator converge to zero as ℓ → +∞, we apply L’Hôpital’s

rule: limℓ→+∞

as
1

ℓ2
e−as

1/ℓ

1−2as
1

2ℓ2(k−1)
sech2

(
1−2as

1
2ℓ(k−1)

) = limℓ→+∞
2as1(k−1)
1−2as1

e−as
1/ℓ

sech2
(

1−2as
1

2ℓ(k−1)

) = 1. As ℓ → +∞, e−a
s
1/ℓ → 1

and sech2
(

1−2as1
2ℓ(k−1)

)
→ 1. Hence, limℓ→+∞

2as1(k−1)
1−2as1

= 1. This implies that as1 → 1/(2k) as

ℓ→ +∞.

Calculations for Remark 1. Let v ∼ N (ν0, σ
2
0), where σ

2
0 > 0 exogenous. The player has access

to signals f(a) = v+ ξ(a) where the noise terms are correlated according to the Ornstein-Uhlenbeck

covariance (with variance 1 and correlation exp(−|a2−a1|/ℓ)). Hence, any two signals (f(a1), f(a2))

are correlated according to the Ornstein-Uhlenbeck covariance as well: their variance is σ2
0 + 1 and

their covariance is σ2
0 + exp(−|a2 − a1|/ℓ) = σ2

0 + σou(a1, a2). The covariance between v and any
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f(a) is σ2
0 . Let dj = aj+1 − aj . The sample weights for a = {a1, . . . , ak} are

(
σ2
0 . . . σ2

0

)


σ2
0 + 1 σ2

0 + e−d1/ℓ . . . σ2
0 + e−(d1+...+dk−1)/ℓ

σ2
0 + e−d1/ℓ σ2

0 + 1 . . . σ2
0 + e−(d2+...+dk−1)/ℓ

...
...

. . .
...

σ2
0 + e−(d1+...+dk−1)/ℓ σ2

0 + e−(d2+...+dk−1)/ℓ . . . σ2
0 + 1



−1

.

From here we calculate the posterior variance as

ψ2(a) =

k∑
j=1

k∑
m=1

τj(a)τm(a)
(
σ2
0 + e−|am−aj |/ℓ

)
.

For k = 2, the posterior variance simplifies to 4

2 + 1+e−d1/ℓ

σ2
0

2

which is strictly increasing in d1. The optimal signals that maximize this posterior variance subject

to d1 ∈ [0, 1] are a∗2 = {0, 1}. Similarly, it is straightforward to verify that the optimal signals are

a∗3 = {0, 1/2, 1} for k = 3, a∗4 = {0, 1/3, 2/3, 1} for k = 4, and so on. The player seeks to sample

signals that are as weakly correlated as possible, so that the overlap between the information that

they carry about v is as small as possible.

The following lemma establishes that the player’s expected payoff is single-peaked in attribute

correlation in a simple attribute setting that is close to the common-variance-common-correlation

signal setting in Clemen and Winkler (1985). Suppose that the attribute space is finite: A =

{a1, . . . , aN}. The player’s value is
∑N
j=1 f(aj). The common variance is σ(a, a) = 1 and the

common correlation is σ(a, a′) = ρ ∈ (−1/(N − 1), 1) for any a, a′ ∈ A.

Lemma C.2. For any sample a that consists of k attributes, the expected loss var[v] − ψ2(a) is

single-peaked in ρ with a maximum at ρ∗ > 0 such that (1− ρ∗)2 − kρ∗2 = k/(N − 1).

Proof of Lemma C.2. We calculate var[v] and ψ2(a) for the sample of k attributes a = {a1, . . . , ak}.
This is without loss since attributes are identically distributed:

var[v] = Nvar[f(a1)] + 2

(
N

2

)
cov[f(a1), f(a2)] = N +N(N − 1)ρ;

ψ2(a) = var

 k∑
j=1

f(aj)

(1 + (N − k)
ρ

1 + (k − 1)ρ

)2

= (k+k(k−1)ρ)

(
1 + (N − k)

ρ

1 + (k − 1)ρ

)2

.

The expected payoff from sample a is

V (a) = ψ2(a)− var[v] = − (1− ρ)(N − k)((N − 1)ρ+ 1)

(k − 1)ρ+ 1
.
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V is increasing in ρ if and only if (1 − ρ)2 − kρ2 ⩽ k/(N − 1). It is immediate to check that

V is strictly decreasing at any ρ ∈
(
− 1
N−1 , 0

]
. Moreover V is strictly increasing at ρ = 1. For

ρ > 0, the term (1 − ρ)2 − kρ2 is strictly decreasing in ρ. Therefore, there exists a unique ρ∗ at

which (1− ρ∗)2 − kρ∗2 = k
N−1 : the payoff is strictly decreasing (resp., increasing) for ρ < ρ∗ (resp.,

ρ > ρ∗). Hence the expected loss is single-peaked with a peak at ρ∗.

D Proofs and auxiliary results for section 4.2

Proof of Proposition 10. Without loss, suppose aA < aP . Given a sample a = {a}, the sample

weight for player i is τ i(a) := τ i1(a) = σp(a, ai). We first establish that a∗ ⩾ aA for any p ∈ (0, 2].

To the contrary, suppose a∗ < aA. Then as a increases in (a∗, aA), both τ
P (a) and τA(a) increase.

The agent’s payoff strictly increases because

∂VA(a)

∂a
= 2τP (a)

(
∂τA(a)

∂a
− ∂τP (a)

∂a

)
+ 2τA(a)

∂τP (a)

∂a
.

This is strictly positive for a < aA since for both players, τ i > 0, ∂τ i(a)/∂a > 0, and ∂τ i(a)/∂a

decreases in ai. The agent is strictly better off sampling aA instead. Next, we establish that a∗ /∈
((aA+aP )/2, aP ) for any p ∈ (0, 2]. The agent’s payoff is strictly decreasing in a ∈ ((aA+aP )/2, aP )

because ∂τA(a)/∂a < 0, ∂τP (a)/∂a < 0 and 0 < τA(a) < τP (a). The agent is better off sampling

(aP + aA)/2 instead. Third, we establish that a∗ ⩽ aP for any p ∈ (0, 2]. Suppose, to the contrary,

that a∗ > aP . Consider an alternative sample ã = aP − (a∗ − aP ). If available, i.e., if ã ∈ A,

τP (ã) = τP (a∗) but τA(ã) > τA(a∗), hence VA(ã) > VA(a
∗). If ã /∈ A, it must be that ã < aA.

But by the argument above, the agent strictly prefers aA to any such ã < aA. This contradicts the

optimality of a∗. Hence, these three observations imply that a∗ ∈ [aA, (aP +aA)/2] for any p ∈ (0, 2].

(i) Let p ∈ (0, 1]. For any a ∈ [aA, (aP + aA)/2] and any p ∈ (0, 2], the agent’s payoff VA(a) is

strictly decreasing in a if and only if

(
aP − a

a− aA

)1−p
e(

aP −a

ℓ )
p

e(
aP −a

ℓ )
p

− e(
a−aA

ℓ )
p > 1,

which holds because 0 < a − aA < aP − a. Therefore, the agent prefers sampling aA to sampling

any a ∈ [aA, (aP + aA)/2].

(ii) Let p ∈ (1, 2]. At a = aA, the agent’s payoff is increasing because the LHS of the inequality

in part (i) is zero. Moreover, the first-order condition that pins down the optimal sample a∗ ∈
(aA, (aP + aA)/2) is

e

(
aP −a∗

ℓ

)p

e

(
aP −a∗

ℓ

)p

− e

(
a∗−aA

ℓ

)p =

(
aP − a∗

a∗ − aA

)p−1

.

As ℓ→ 0, the LHS approaches 1. Therefore it must be that RHS approaches 1 as well, which implies
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that a∗ approaches (aP +aA)/2. Alternatively, as ℓ→ +∞, the LHS approaches +∞, which implies

that a∗ → aA so that the RHS approaches +∞ as well.

Moreover, as p→ 1, the RHS of the FOC converges to 1, whereas the LHS converges to

e
aP −a∗

ℓ

e
aP −a∗

ℓ − e
a∗−aA

ℓ

⩾ 1.

In order for the FOC to hold, it must be that LHS also converges to 1, which implies that a∗ →
aA.

Proposition D.1. If σ satisfies NAP, no sampling is optimal if and only if for any a ∈ A,

τP (a)/τA(a) > 2.

Proof. Fix k. If no sampling is strictly optimal, then in particular VA({a1}) < 0 for any singleton

sample inA1, which is equivalent to 2τA(a1)−τP (a1) < 0. Conversely, suppose ∆A/∆P is sufficiently

close to zero. If sample a∗ = {a1, . . . , an} is optimal, by the previous argument all samples of size 1

must attain strictly negative payoff, hence n ≥ 2. In particular, τA(aj) < τP (aj)/2 for all aj ∈ a∗.

But then,

α2(a
∗) <

n∑
j=1

τPj (a∗)
τP (aj)

2
=
α1(a

∗)

2

hence VA(a
∗) < 0 as well. This contradicts the optimality of a∗.

Proof of Proposition 11. (i) Without loss, let āA < aP . Suppose a∗ = {a1, a2} where a1 ∈ [aA, āA]

and a2 ∈ [aP , āP ]. We show that VA({a1, a2}) ⩽ VA({a1, aP }) < VA({āA}). Consider first the

difference α2({a1, a2})− α2({a1}), which due to NAP equals

τA2 (a∗)τP2 (a∗)
(
1− σ2

ou(a1, a2)
)
=

(∫ āA

a1

σou(a, aP )(1− σ2
ou(a, a1)) da

)
τP2 (a∗)σou(aP , a2).

The term τP2 (a∗)σou(aP , a2) strictly decreases over a2 ∈ [aP , āP ] because its first derivative with

respect to a2 is −2e−(a1−aP )/ℓcsch2((a1 − a2)/ℓ) sinh((a2 − aP )/(2ℓ)) sinh((a2 + aP − 2a1)/(2ℓ)) < 0

for a2 > aP . Hence, α2({a1, aP }) > α2({a1, a2}) for any a2 > aP . On the other hand, ψ2
P ({a1, a2})

is single-peaked in a2 ∈ [aP , āP ] with the peak at â2 > (aP + āP )/2, because in the absence of a1,

ψ2
P would be maximized at (aP + āP )/2. Moreover, for any a2 > â2, ψ

2
P ({a1, a2}) > ψ2

P ({a1, â2 −
(a2 − â2)}). Hence, for any a2 ∈ (aP , āP ], ψ

2
P ({a1, a2}) > ψ2

P ({a1, aP }). Therefore, a2 = aP guar-

antees higher covariance and lower ψ2
P , which implies VA({a1, a2}) < VA({a1, aP }) = VA({aP }) for

any a2 > aP , where the last equality follows from τP1 ({a1, aP }) = 0. Now consider the alterna-

tive sample {āA}. Note that ψ2
P ({āA}) = σ2

ou(aP , āA)ψ
2
P ({aP }) < ψ2

P ({aP }) and τP (āA)τA(āA) =(
σou(āA, aP )τ

P (aP )
) (
τA(aP )/σou(āA, aP )

)
= τP (aP )τ

A(aP ). Hence, VA({aP }) < VA({āA}). There-
fore, {āA} dominates a∗. Moreover, any sample of the form {a2} for a2 ∈ [aP , āP ] is dominated by

{āA}. Hence the optimal sample is of the form {a1}, where a1 ∈ [aA, āA]. Differentiating VA({a1})
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with respect to a1,

∂VA(a1)

∂a1
= 2ℓe

a1−āA−2(aP +āP )

ℓ

(
e

āP
ℓ − e

aP
ℓ

)(
e

a1
ℓ C1 + C0

)
where C1 = eāA/ℓ

(
eaP /ℓ − eāP /ℓ

)
− 2e(aP+āP )/ℓ < 0 and C0 = 2e(āA+aP+āP )/ℓ > 0. Therefore, the

FOC that uniquely pins down a∗1, whenever the solution is interior in [aA, āA], is e
a∗1/ℓ = −C0/C1.

The second order condition is satisfied as well because

∂2VA(a1)

∂a21

∣∣∣∣
a1=a∗1

= 4e
a∗
1−āA−2(aP +āP )

ℓ

(
e

āP
ℓ − e

aP
ℓ

)(
e

a∗
1
ℓ C1 + C0/2

)
< 0.

It can be easily verified that VA({āA}) < 0. Moreover if eaA/ℓC1 + C0 > 0 then VA({aA}) > 0.

Therefore, either VA({aA}) > 0 > VA({āA}) and VA is single-peaked in a1, or VA({aA}) < 0

and VA is strictly decreasing in a1. The optimal attribute, if interior, is given by a∗1 = āP −
ℓ ln

(
1
2

(
2e(āP−āA)/ℓ + e(āP−aP )/ℓ − 1

))
, which simplifies to a∗1 = −ℓ ln

(
e−āA/ℓ + e−aP /ℓ−e−āP /ℓ

2

)
.

The case of āP < aA follows by a similar argument.

(ii) Let āP < aA. Equation (15) simplifies to ea
∗
1/ℓ − eaA/ℓ = 1

2

(
eāP /ℓ − eaP /ℓ

)
. By implicit differ-

entiation with respect to ℓ, we obtain

∂a∗1(ℓ)

∂ℓ
= e−a

∗
1/ℓ

(
a∗1
ℓ
ea

∗
1/ℓ − aA

ℓ
eaA/ℓ − āP

2ℓ
eāP /ℓ +

aP
2ℓ
eaP /ℓ

)
.

The function g(x) := xex is above f(x) := ex for x > 1, below f(x) for x < 1, and strictly more

convex than f(x). Hence, if ea
∗
1/ℓ−eaA/ℓ− 1

2

(
eāP /ℓ − eaP /ℓ

)
= 0 then

a∗1
ℓ e

a∗1/ℓ− aA
ℓ e

aA/ℓ− āP
2ℓ e

āP /ℓ+
aP
2ℓ e

aP /ℓ > 0. Therefore, a∗1(ℓ) is strictly increasing in ℓ. An analogous argument applies to the case

of āA < aP .

(iii) We take the limit of a∗1(ℓ) in (15) as ℓ→ 0+. Let āP < aA. Applying L’Hôpital’s rule and then

dividing through by eaA/ℓ, we obtain

lim
ℓ→0+

a∗1(ℓ) = lim
ℓ→0+

2aAe
aA/ℓ + āP e

āP /ℓ − aP e
aP /ℓ

2eaA/ℓ + eāP /ℓ − eaP /ℓ
= lim
ℓ→0+

2aA + āP e
−(aA−āP )/ℓ − aP e

−(aA−aP )/ℓ

2 + e−(aA−āP )/ℓ − e−(aA−aP )/ℓ

which is just 2aA/2 = aA. By a similar argument, if āA < aP then a∗1(ℓ) → āA as ℓ→ 0+.

(iv) Let āP < aA. By similar steps to part (iii),

lim
ℓ→+∞

a∗1(ℓ) = lim
ℓ→+∞

2aA + āP e
−(aA−āP )/ℓ − aP e

−(aA−aP )/ℓ

2 + e−(aA−āP )/ℓ − e−(aA−aP )/ℓ
=

2aA + āP − aP
2

= aA +
∆P

2
.

If ∆A ⩾ ∆P /2, this limit is interior in [aA, āA]. Otherwise, a∗ is empty. A similar argument applies

to the case of āA < aP .

Proof of Proposition 12. Without loss, fix 0 < aA < aP < āA < āP < 1 and let an optimal sample

be a∗ = {a1, . . . , an}. We first show that there is no sampling in (āA, āP ]. Suppose first that
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n = 1 and a1 ∈ (āA, āP ]. Then, α2(a1) = σou(āA, a1)τ
A(āA)τ

P (a1) and its first derivative with

respect to a1 is −2τA(āA) exp((āA − 2a1)/ℓ)(exp(a1/ℓ) − exp(aP /ℓ)) < 0. Hence, α2 is strictly

decreasing over (āA, āP ]. Let asP := (aP + āP )/2. If a1 ∈ (āA, a
s
P ], α1 is strictly increasing, hence

VA(a1) is strictly decreasing. If a1 ∈ (asP , āP ], then due to ψ2
P being single-peaked at asP and

symmetric around it, τP (a1) = τP (asP − (a1 − asP )) and α1(a1) = α1(a
s
P − (a1 − asP )). Hence,

VA(a1) < VA(a
s
P − (a1 − asP )). Next suppose n ≥ 2 and an > āA. Consider first the difference

α2(a
∗)− α2(a

∗ \ {an}) = τAn (a∗)τPn (a∗)(1− σ2
ou(an−1, an)), which equals

σou(āA, an)τ
P
n (a∗)

(∫ āA

an−1

σou(a, āA)(1− σ2
ou(a, an−1)) da

)
.

The term σou(āA, an)τ
P
n (a∗) is strictly decreasing in an because its first derivative with respect to

an is −2 exp((āA − an−1)/ℓ)csch
2((an−1 − an)/ℓ) sinh((an − aP )/ℓ) sinh((an + aP − 2an−1)/ℓ) < 0

if an−1 < aP and −2 exp((an + āA)/ℓ)/(exp(an−1/ℓ) + exp(an/ℓ))
2 < 0 if an−1 ≥ aP . Therefore,

α2(a
∗) is strictly decreasing in an ∈ (āA, āP ]. On the other hand, from the single-player benchmark

we know that ψ2
P (a

∗) is single-peaked in an ∈ (an−1, āP ], with a peak at asn > (aP+āP )/2 because in

the absence of the rest of the sample, and in particular an−1, it would be maximized at (aP + āP )/2.

If asn > āA, then any attribute in (āA, a
s
n) is dominated by āA. Moreover VA is either single-

troughed in an, with a trough to the right of asn, or strictly decreasing in an ∈ (āA, āP ]. Hence,

VA((a
∗ \ {an}) ∪ āA) > VA((a

∗ \ {an}) ∪ āA).
Second, to show that there is no sampling in [aA, aP ) for n ≥ 2, we suppose by contradiction

that a1 < aP . For τP1 (a∗) ̸= 0, it must be that a2 > aP . Differentiate VA with respect to a1, we

obtain

4ℓ

(
2 cosh

(
a1 − a2

ℓ

)
− 1− cosh

(
a2 − aP

ℓ

))
csch2

(
a1 − a2

ℓ

)
sinh2

(
a2 − aP

2ℓ

)
> 0

for any a1 ≤ aP < a2 because a2 − a1 > a2 − aP . Hence, VA strictly increases in a1. Finally, n = k

by Corollary 9.

E Extensions and additional results

E.1 Examples for section 5.1

Example E.1 (Inference reversal due to conflicting attributes). Let A = [a, ā] and ω(a) = 1 for

all a ∈ A. The attribute covariance is σlin(a, a
′) = (a − â)(a′ − â) and the prior mean is µ(a) = 0

for a, a′ ∈ A; note that σlin(â, â) = 0. This structure corresponds to a linear attribute mapping f

that goes through the realization f(â) = 0 for â ∈ A and the slope of which is not known (Figure 1).

Attribute variance increases quadratically with distance from â. Without loss, let â < (a+ ā)/2. The

correlation between any two attribute realizations is perfect because
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corr(f(a), f(a′)) =
σlin(a, a

′)√
σlin(a, a)σlin(a′, a′)

=

+1 if sgn(a− â) = sgn(a′ − â)

−1 if sgn(a− â) ̸= sgn(a′ − â).

Therefore, discovering one more attribute resolves all uncertainty about f .

a āâ ~a

Figure 1: Linear attribute mapping corresponding to σlin

Suppose ã ̸= â is discovered. The uncertainty about v prior to the discovery of f(ã) is 1
4 (ā −

a)2(ā+ a− 2â)2. The project is more uncertain the greater is the mass of attributes (ā− a) and the

farther â is from the median attribute (a+ ā)/2, i.e., the more peripheral the known attribute â is. If

â is exactly the median attribute, the uncertainty about v is zero because the uncertainty about [a, â]

cancels that about [â, ā]. Given a singleton sample a = {ã}, by equation (6) the expected realization

of any other attribute a is E [f(a) | f(ã)] = τ1(a;a)f(ã) = (a− â)f(ã)/(ã− â). Hence, from equation

(8), the sample weight is τ1(ã) =
1
2 (ā− a)(ā+ a− 2â)/(ã− â), which is strictly negative for ã < â.

That is, a high realization for ã < â implies low realizations for attributes in [â, ā], which is the

majority of the attributes. Therefore, the sample weight of attributes to the left of â is negative even

though all attributes are desirable.

Example E.2 (Inference reversal due to the presence of other sample attributes). Let A = [0, 1],

ω(a) = 1, and the squared-exponential covariance σ2(a, a
′) = e−(a−a′)2/ℓ2 for all a, a′ ∈ [0, 1]. Lemma

E.3 shows the possibility of a reversal in the direction of inference when going from a one-attribute

sample to a two-attribute one. Due to the positive attribute correlation, any singleton sample has

a strictly positive sample weight. But in a two-attribute sample, one of the attributes can have a

strictly negative sample weight, even though the sum of the sample weights for the two attributes

must be strictly positive. Lemma E.3(ii) establishes that such a negative sample weight arises if and

only if the two attributes are on the same side of the median attribute and attribute correlation is

high. The attribute with a negative sample weight is the one farther away from the median attribute.

Lemma E.3. Let σ2(a, a
′) = e−(a−a′)2/ℓ2 , and ω(a) = 1 for all a, a′ ∈ [0, 1]. For any sample

a1 = {a1}, τ1(a1) > 0. For any two-attribute sample a2 = {a1, a2} such that 0 ⩽ a1 < a2 ⩽ 1,

(i) the sum of sample weights is always positive: τ1(a2) + τ2(a2) > 0;

(ii) one of the attributes is assigned a strictly negative if and only if a1 and a2 are on the same

side of the median attribute and ℓ is sufficiently large.
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Proof of Lemma E.3. (i) Let g(a) := erf
(
a
ℓ

)
+erf

(
1−a
ℓ

)
. First, note that g(a) > 0 because a1 ∈ [0, 1],

ℓ > 0 and erf(x) > 0 for any x > 0. For a singleton sample, equation (8) simplifies to τ1(a1) =

ℓ
√
πg(a1) > 0. Now consider a2 = {a1, a2}, where a1 < a2, and let d := a2 − a1. Applying Lemma

1, the sample weights are given by

τj(a) =
1

4
ℓ
√
πe−

4a1a2
ℓ2 csch

(
d2

ℓ2

)(
ed

2/ℓ2g(aj)− g(a−j)
)

which is positive if and only if ed
2/ℓ2g(aj)− g(a−j) > 0. Then, the sign of the sum τ1(a) + τ2(a) is

determined by the sign of g(a1) + g(a2), which is strictly positive for any a1, a2 ∈ [0, 1]. Hence at

least one of the attributes has a strictly positive sample weight.

(ii) Taking the limit of these sample weights as ℓ→ +∞, we obtain

lim
ℓ→+∞

τ1(a2) =
2a2 − 1

2(a2 − a1)
, lim

ℓ→+∞
τ2(a2) =

1− 2a1
2(a2 − a1)

.

If a1 < a2 < 1/2, then limℓ→+∞ τ1(a2) < 0. If 1/2 < a1 < a2, then limℓ→+∞ τ2(a2) < 0. So the

conditions are sufficient. To show that they are also necessary, suppose first a1 < 1/2 < a2. Then,

ed
2/ℓ2g(aj) − g(a−j) strictly increases in the distance d for any aj ∈ a2 and it is zero for d = 0.

Second, suppose that a1 < a2 < 1/2. Then, τ1(a2) as a function of ℓ is single-troughed in ℓ and

crosses zero only once in ℓ, say at ℓ = ℓ̄. On the other hand, τ2(a2) as a function of ℓ is decreasing

and strictly positive in ℓ. Hence, for τ1(a2) to be strictly negative, it is necessary that ℓ > ℓ̄.

E.2 Binary decision and reservation values

Proposition E.2. Let D = {0, 1} and for each i = A,P , u(1, vi) = vi and u(0, vi) = ri, where

ri ∈ R is a known outside option. The agent’s expected payoff from any sample a ∈ Ak is

VA(a) = rA +
(
νA0 − rA

)
Φ

(
νP0 − rP√
α1(a)

)
+

α2(a)√
α1(a)

ϕ

(
νP0 − rP√
α1(a)

)
,

where α1 and α2 are as defined in theorem 2.

Proof of proposition E.2. Let ρ(a) denote the correlation between νP (a) and νA(a), the joint distri-

bution is Gaussian:(
νP (a)

νA(a)

)
∼ N

((
νP0

νA0

)
,

(
ψ2
P (a) ρ(a)ψA(a)ψP (a)

ρ(a)ψA(a)ψP (a) ψ2
P (a)

))
.

Claim 1. For any rP ∈ R,

f(νA(a) | νP (a) ≥ rP ) =
ϕ
(
νA(a)−νA

0

ψA(a)

)
ψA(a)Φ

(
νP
0 −rP
ψP (a)

)Φ
νP0 + ρ(a)ψP (a)

ψA(a) (ν
A(a)− νA0 )− rP

ψP (a)
√
1− ρ(a)2

 .

11



Proof. Let x1, x2 be jointly Gaussian with means µ1, µ2, variances σ
2
1 , σ

2
2 and covariance σ12. Let

f1, f2 and F1, F2 denote their respective pdf and cdf. Then,

f(x1 | x2 ≥ x̄) =
1

1− F2(x̄)
Pr(x2 ≥ x̄)f(x1 | x2 ≥ x̄)

=
1

1− F2(x̄)

∫ ∞

x̄

f(x2 | x1)f1(x1)dx2

=
f1(x1)

1− F2(x̄)
(1− Fx2|x1

(x̄)).

The first line multiplies and divides by Pr(x2 ≥ x̄). The second line rewrites Pr(x2 ≥ x̄)f(x1 | x2 ≥
x̄) using the joint density and the observation that f(x1, x2) = f(x2 | x1)f1(x1). The last two lines

use the conditional distribution of x2 | x1. But,

x2 | x1 ∼ N
(
µ2 + ρ

σ2
σ1

(x1 − µ1), (1− ρ2)σ2
2

)
and ρ = σ12

σ1σ2
. Therefore, we can substitute in the expression for Fx2|x1

to obtain

f(x1 | x2 ≥ x̄) =
f1(x1)

1− F2(x̄)

(
1− Φ

(
x̄− µ2 − ρσ2

σ1
(x1 − µ1)

σ2
√

1− ρ2

))
.

Switching back to our variables of interest, let x1 := νA(a) ∼ N (νA0 , ψ
2
A(a)), x2 := νP (a) ∼

N (νP0 , ψ
2
P (a)) and x̄ := rP . Therefore,

f(νA(a)|νP (a) ≥ rP ) =
ϕ
(
νA(a)−νA

0

ψA(a)

)
ψA(a)

(
1− Φ

(
rP−νP

0

ψP (a)

))
1− Φ

rP − νP0 − ρ(a)ψP (a)
ψA(a) (ν

A(a)− νA0 )

ψP (a)
√
1− ρ(a)2

 .

Using the claim, observe that:

Pr(νP (a) ≥ rP )E[νA(a) | νP (a) ≥ rP ] = Φ

(
νP0 − rP
ψP (a)

)∫ ∞

−∞
νA(a)f(νA(a)|νP (a) ≥ rP ) dν

A(a)

=

∫ ∞

−∞

νA(a)

ψA(a)
ϕ

(
νA(a)− νA0
ψA(a)

)
Φ

νP0 + ρ(a)ψP (a)
ψA(a) (ν

A(a)− νA0 )− rP

ψP (a)
√

1− ρ(a)2

 dνA(a)

=

∫ ∞

−∞

(
xψA(a) + νA0

)
ϕ(x)Φ

(
νP0 + ρ(a)ψP (a)x− rP

ψP (a)
√

1− ρ2(a)

)
dx,

where in the last line x :=
νA(a)−νA

0

ψA(a) . From Owen (1980), we have the following Gaussian identities
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(respectively, numbered 10,010.8 and 10,011.1 in Owen (1980)):∫ ∞

−∞
ϕ(x)Φ(a+ bx)dx = Φ

(
a√

1 + b2

)
,

∫ ∞

−∞
xϕ(x)Φ(a+ bx)dx =

b√
1 + b2

ϕ

(
a√

1 + b2

)
.

Letting a := (νP0 − rP )/(ψP (a)
√

1− ρ2(a)) and b := ρ(a)/
√

1− ρ2(a),

Pr(νP (a) ≥ rP )E[νA(a) | νP (a) ≥ rP ] = νA0 Φ

(
νP0 − rP
ψP (a)

)
+ ρ(a)ψA(a)ϕ

(
νP0 − rP
ψP (a)

)
.

Therefore, the agent’s payoff from sample a simplifies to

VA(a) = Pr(νP (a) < rP )rA + νA0 Φ

(
νP0 − rP
ψP (a)

)
+ ρ(a)ψA(a)ϕ

(
νP0 − rP
ψP (a)

)
= rA + (νA0 − rA)Φ

(
νP0 − rP
ψP (a)

)
+ ρ(a)ψA(a)ϕ

(
νP0 − rP
ψP (a)

)
.

Finally note that cov[νP (a), νA(a)] = cov[νP (a), vA] = α2(a) because τ
A
j (a)+

∑
i̸=j τ

A
i (a)σ(ai, aj) =

τA(aj). Substituting ΨP (a) =
√
α1(a) and ρ(a)ψA(a) = α2(a)/

√
α1(a) into VA(a), we obtain the

desired expression.

E.3 Noisy observations of attribute realizations

Fix a sample a ∈ Ak and noisy observations y(a) = f(a)+ ϵ(a), where ϵ(a) ∼ N (µ0(a), η2(a)) is the

noise term drawn independently across attributes. Figure 2 illustrates extrapolation across noisy

realizations of a Brownian sample path.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Driftless Brownian Motion

No noise

=0.25
No noise

 = 0.25
True path

Figure 2: Extrapolation across a standard Brownian motion with η = 0 (red) and η = 0.25 (blue). Sample a =
{1/4, 1/2, 3/4} and A = [0, 1]. Also, µ(a) = µ0(a) = 0 for all a ∈ A.

Corollary E.4. The set of single-player samples does not depend on observational bias µ0.
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Proof. Fix a sample a = {a1, . . . , ak} ∈ Ak. The observations are distributed according to


y(a1)

...

y(ak)

 ∼ N




µ(a1) + µ0(a1)

...

µ(ak) + µ0(ak)

 ,


σ(a1, a1) + η2(a1) . . . σ(a1, ak)

σ(a2, a1) . . . σ(a2, ak)

...
. . .

...

σ(ak, a1) . . . σ(ak, ak) + η2(ak)


 .

Let Σ(η) be this new covariance matrix. Following Lemma 1, τj(â;a) is now the (1, j)th entry of

the matrix
(
σ(a1, â) . . . σ(ak, â)

)
Σ−1(η). The posterior variance is as in equation (10), where

τj(a) is derived from τj(â;a) above as in Lemma 2.1. By the same argument as in Theorem 1(iii),

µ0 enters neither the posterior variance nor the single-player sample.

Example E.5 (Noisier observations, more uncertain attributes). Consider the Brownian covariance

σbr(a, a
′) = min(a, a′) over A = [0, 1]. That is, attribute uncertainty increases from left to right and

attribute a = 0 is the least uncertain attribute. Let ω(a) = 1 for all a ∈ [0, 1] and k = 1. The

observations are of the form y(a) = f(a) + ϵ, where ϵ ∼ N (0, η2). For any sample a ∈ [0, 1], the

posterior variance ψ2(a) naturally decreases with the amount of noise η2. The optimal sample a∗(η)

is pinned down by a∗(η) (3a∗(η)− 2)− 4 (1− a∗(η)) η2 = 0. It can be easily verified that the optimal

attribute without observational noise is a∗(0) = 2/3. By implicit differentiation with respect to η,
∂a∗(η)

∂η
=

4η(1− a∗(η))

3a∗(η) + 2η2 − 1
> 0 for a∗ ∈ (2/3, 1) and η > 0 and a∗(η) is strictly increasing at η = 0.

The higher η2 is, the further away the single-player attribute is from a = 0. That is, in the presence

of greater observational noise, the player samples attributes that are ex ante more uncertain.

References

Clemen, Robert T., and Robert L. Winkler. 1985. “Limits for the Precision and

Value of Information from Dependent Sources.” Operations Research, 33(2): 427–442. 5

Owen, Donald Bruce. 1980. “A Table of Normal Integrals.” Communications in Statistics

- Simulation and Computation, 9(4): 389–419. 12, 13

14


	Proofs and auxiliary results for section 3.2
	Proofs and auxiliary results for section 4.2
	Extensions and additional results
	Examples for section 5.1
	Binary decision and reservation values
	Noisy observations of attribute realizations


